Skip to main content Accessibility help
×
Home

Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles

  • Silvestre Roberto Gonzalez Avila (a1) and Claus-Dieter Ohl (a1)

Abstract

We report on an experimental study on the dynamics and fragmentation of water droplets levitated in a sound field exposed to a single laser-induced cavitation bubble. The nucleation of the cavitation bubble leads to a shock wave travelling inside the droplet and reflected from pressure release surfaces. Experiments and simulations study the location of the high negative pressures inside the droplet which result into secondary cavitation. Later, three distinct fragmentation scenarios are observed: rapid atomization, sheet formation and coarse fragmentation. Rapid atomization occurs when the expanding bubble, still at high pressure, ruptures the liquid film separating the bubble from the surrounding air and a shock wave is launched into the surrounding air. Sheet formation occurs due to the momentum transfer of the expanding bubble; for sufficiently small bubbles, the sheet retracts because of surface tension, while larger bubbles may cause the fragmentation of the sheet. Coarse fragmentation is observed after the first collapse of the bubble, where high-speed jets emanate from the surface of the droplet. They are the result of surface instability of the droplet combined with the impulsive pressure generated during collapse. A parameter plot for droplets in the size range between 0.17 and 1.5 mm and laser energies between 0.2 and 4.0 mJ allows the separation of these three regimes.

Copyright

Corresponding author

Email address for correspondence: roberto_glez83@hotmail.com

References

Hide All
Agbaglah, G., Joserrand, C. & Zaleski, S. 2013 Longitudinal instability of a liquid rim. Phys. Fluids 25, 022103.
Alexander, D. R. & Armstrong, J. G. 1987 Explosive vaporization of aerosol drops under irradiation by a CO2 laser beam. Appl. Opt. 26 (3), 533537.
Anderson, J. D. Jr 1990 Modern Compressible Flow with Historical Perspective, 2nd edn. McGraw-Hill.
Antkowiak, A., Bremond, N., Dizes, S. L. & Villermaux, E. 2007 Short-term dynamics of a density interface following an impact. J. Fluid Mech. 577, 241250.
Banine, V. Y., Koshelev, K. N. & Swinkels, G. H. P. M. 2011 Physical processes in EUV sources for microlithography. J. Phys. D: Appl. Phys. 44, 253001.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Bouard, R. & Coutanceau, M. 1980 The early stage of development of the wake behind an impulsively started cylinder for 40 < Re < 104 . J. Fluid Mech. 101, 583607.
Brenner, M. P. D., Lohse, D. & Dupont, T. F. 1995 Bubble shape oscillations and the onset of sonoluminescence. Phys. Rev. Lett. 75, 954957.
Carls, J. C. & Brock, J. R. 1987 Explosion of a water droplet by pulsed laser heating. Aerosol Sci. Technol. 7 (1), 7990.
Courbin, L. & Stone, H. A. 2006 Impact, rupturing and the self-healing of soap films. Phys. Fluids 18, 2336102.
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 11281129.
Eickmans, J. H., Hsieh, W. F. & Chang, R. K. 1987a Laser-induced explosion of H2O droplets: spatially resolved spectra. Opt. Lett. 12 (1), 2224.
Eickmans, J. H., Hsieh, W. F. & Chang, R. K. 1987b Plasma spectroscopy of H, Li and Na plumes resulting from laser-induced explosion. Appl. Opt. 26 (17), 37213725.
Foresti, D., Nabavi, M. & Poulikakos, D. 2012 On the acoustic levitation stability behaviour of spherical and ellipsoidal particles. J. Fluid Mech. 709, 581592.
Gilet, T. & Bush, J. W. M. 2009 The fluid trampoline: droplets bouncing on a soap film. J. Fluid Mech. 625, 167203.
Gonnermann, H. H. & Manga, M. 2007 The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech. 39, 321356.
Hsieh, W. F., Zheng, J.-B., Wood, C. F., Chu, B. T. & Chang, R. K. 1987 Propagation velocity of laser-induced plasma inside and outside a transparent droplet. Opt. Lett. 12 (8), 576578.
Janzen, C., Fleige, R., Noll, R., Schwenke, H., Lahmann, W., Knoth, J., Beaven, P., Jantzen, E., Oest, A. & Koke, P. 2005 Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy. Spectrochim Acta B 60, 9931001.
Kafalas, P. & Ferdinand, A. P. Jr 1973 Fog droplet vaporization and fragmentation by a 10. 6 μm laser pulse. Appl. Opt. 12 (1), 2933.
Kafalas, P. & Herrmann, J. 1973 Dynamics and energetics of the explosive vaporization of fog droplets by a 10. 6 μm laser pulse. Appl. Opt. 12 (4), 772775.
Kim, I. & Wu, X. L. 2010 Tunneling of micron-sized droplets through soap films. Phys. Rev. E 82, 026313.
Klein, A., Bouwhuis, W., Visser, C. W., Lhuissier, H., Sun, C., Snoeijer, J. H., Villermaux, E., Lohse, D. & Gelderblom, H. 2015 Drop shaping by laser-pulse impact. Phys. Rev. Appl. 3 (4), 044018.
Kobel, P., Obreschkow, D., De Bosset, A., Dorsaz, N. & Farhat, M. 2009 Techniques for generating centimetric drops in microgravity and application to cavitation studies. Exp. Fluids 47, 3948.
Lindinger, A., Hager, J., Sosaciu, L. D., Bernhardt, T. M., Wöste, L., Duft, D. & Leisner, T. 2004 Time-resolved explosion dynamics of H2O droplets induced by femtosecond laser pulses. Appl. Opt. 43 (27), 52635269.
Noll, R. 2012 Laser-Induced Breakdown Spectroscopy. Springer.
Obreschkow, D., Kobel, P., Dorsaz, N., De Bosset, A., Nicollier, C. & Farhat, M. 2006 Cavitation bubble dynamics inside liquid drops in microgravity. Phys. Rev. Lett. 094502.
Paltauf, G., Schmidt-Kloiber, H. & Frenz, M. 1998 Photoacoustic waves excited in liquids by fiber-transmitted laser pulses. J. Acoust. Soc. Am. 104, 890897.
Peters, I. R., Tagawa, Y., Oudalov, N., Sun, C., Prosperetti, A., Lohse, D. & van der Meer, D. 2013 Highly focused supersonic microjets: numerical simulations. J. Fluid Mech. 719, 587605.
Plesset, M. S. 1954 On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25, 9698.
Robert, E., Lettery, J., Farhat, M., Monkewitz, P. A. & Avellan, F. 2007 Cavitation bubble behavior inside a liquid jet. Phys. Fluids 19, 067106.
Schonfeld, J. F. 1992 The theory of compensated laser propagation through strong thermal blooming. Lincoln Laboratory J. 5 (1), 131150.
Singh, P. I. & Knight, C. J. 1980 Pulsed laser-induced shattering of water drops. AIAA J. 18 (1), 96100.
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2006 Crown breakup by Marangoni instability. J. Fluid Mech. 557, 6372.
Thoroddsen, S. T., Takehara, K., Etoh, T. G. & Ohl, C.-D. 2009 Spray and microjets produced by focusing a laser pulse into a hemispherical drop. Phys. Fluids 21, 112101.
Veron, F. 2015 Ocean spray. Annu. Rev. Fluid Mech. 47, 507538.
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39, 419446.
Villermaux, E. & Bossa, B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5, 697702.
Villermaux, E. & Clanet, C. 2002 Life of a flapping liquid sheet. J. Fluid Mech. 462, 341363.
Vogel, A., Busch, S. & Parlitz, U. 1996 Shock wave emission and cavitation bubble generation by pico-second and nano-second optical breakdown in water. J. Acoust. Soc. Am. 100, 148165.
Vogel, A., Noack, J., Nahen, K., Theisen, D., Busch, S., Parlitz, U., Hammer, D. X., Noojin, G. D., Rockwell, B. A. & Birnbruger, R. 1999 Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B 68, 271280.
Walls, P. L. L., Bird, J. C. & Bourouiba, L. 2014 Moving with bubbles: a review of the interactions between bubbles and the microorganisms that surround them. Integr. Compar. Biol. 54 (6), 10141025.
Wang, J., Maiorov, M., Baer, D. S., Garbuzov, D. Z., Conolly, J. C. & Hanson, R. K. 2000 In-situ combustion measurements of CO with diode-laser absorption near 2.3 mm. Appl. Opt. 39 (30), 55795589.
Yarin, A. L., Pfaffenlehner, M. & Tropea, C. 1998 On the acoustic levitation of droplets. J. Fluid Mech. 356, 6591.
Zhang, J.-Z., Lam, J. K., Wood, C. F., Chu, B.-T. & Chang, R. 1987 Explosive vaporization of a large transparent droplet irradiated by a high intensity laser. Appl. Opt. 26 (22), 47314737.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed