Skip to main content Accessibility help

Frequency–wavenumber mapping in turbulent shear flows

  • Roeland de Kat (a1) and Bharathram Ganapathisubramani (a1)


Spatial turbulence spectra for high-Reynolds-number shear flows are usually obtained by mapping experimental frequency spectra into wavenumber space using Taylor’s hypothesis, but this is known to be less than ideal. In this paper, we propose a cross-spectral approach that allows us to determine the entire wavenumber–frequency spectrum using two-point measurements. The method uses cross-spectral phase differences between two points – equivalent to wave velocities – to reconstruct the wavenumber–frequency plane, which can then be integrated to obtain the spatial spectrum. We verify the technique on a particle image velocimetry (PIV) data set of a turbulent boundary layer. To show the potential influence of the different mappings, the transfer functions that we obtained from our PIV data are applied to hot-wire data at approximately the same Reynolds number. Comparison of the newly proposed technique with the classic approach based on Taylor’s hypothesis shows that – as expected – Taylor’s hypothesis holds for larger wavenumbers (small spatial scales), but there are significant differences for smaller wavenumbers (large spatial scales). In the range of Reynolds number examined in this study, double-peaked spectra in the outer region of a turbulent wall flow are thought to be the result of using Taylor’s hypothesis. This is consistent with previous studies that focused on examining the limitations of Taylor’s hypothesis (del Álamo & Jiménez, J. Fluid Mech., vol. 640, 2009, pp. 5–26). The newly proposed mapping method provides a data-driven approach to map frequency spectra into wavenumber spectra from two-point measurements and will allow the experimental exploration of spatial spectra in high-Reynolds-number turbulent shear flows.


Corresponding author

Email address for correspondence:


Hide All
del Álamo, J. C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.
Buxton, O. H. R., de Kat, R. & Ganapathisubramani, B. 2013 The convection of large and intermediate scale fluctuations in a turbulent mixing layer. Phys. Fluids 25, 125105.
Cenedese, A., Romano, G. P. & Di Felice, F. 1991 Experimental testing of Taylor’s hypothesis by L.D.A. in highly turbulent flow. Exp. Fluids 11, 351358.
Davies, P. O. A. L. & Fisher, M. J. 1963 Statistical properties of the turbulent velocity fluctuations in the mixing region of a round subsonic jet. AASU Report 233. University of Southampton.
Davies, P. O. A. L., Fisher, M. J. & Barrat, M. J. 1963 The characterisics of the turbulence in the mixing region of a round jet. J. Fluid Mech. 15, 337367.
Dennis, D. J. & Nickels, T. B. 2008 On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer. J. Fluid Mech. 614, 197206.
Dennis, D. J. C. & Nickels, T. B. 2011 Experimental measurement of large-scale three-dimensional structures in a turbulent boudnary layer. Part 1. Vortex packets. J. Fluid Mech. 673, 180217.
Elsinga, G. E., Poelma, C., Schröder, A., Geisler, R., Scarano, F. & Westerweel, J. 2012 Tracking of vortices in a turbulent boundary layer. J. Fluid Mech. 697, 273295.
Fisher, M. J. & Davies, P. O. A. L. 1964 Correlation measurements in a non-frozen pattern of turbulence. J. Fluid Mech. 18, 97116.
Freegarde, T. 2013 Introduction to the Physics of Waves. Cambridge University Press.
Geng, C., He, G., Wang, Y., Xu, C., Lozano-Durán, A. & Wallace, J. M. 2015 Taylor’s hypothesis in turbulent channel flow considered using a transport equation analysis. Phys. Fluids 27, 025111.
Goldschmidt, V. W., Young, M. F. & Ott, E. S. 1981 Turbulent convective velocities (broadband and wavenumber dependent) in a plane jet. J. Fluid Mech. 105, 327345.
Harrison, M.1958 Pressure fluctuations on the wall adjacent to a turbulent boundary layer. Tech. Rep. 1260, David Taylor Model Basin.
Herpin, S., Stanislas, M. & Soria, J. 2010 The organization of near-wall turbulence: a comparison between boundary layer SPIV data and channel flow DNS data. J. Turbul. 11 (47), 130.
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.
Hutchins, N., Nickels, T. B., Marusic, I. & Chong, M. S. 2009 Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103136.
de Kat, R. & Ganapathisubramani, B. 2013 Characteristics of Reynolds stresses in a turbulent boundary layer. In Proceedings of the International Symposium on Turbulence and Shear Flow Phenomena, TSFP-8, 28–30 August 2013, Poitiers, France. Paper 4A-4.
de Kat, R. & Ganapathisubramani, B. 2014 Convection of momentum transport events in a turbulent boundary layer. Bull. Am. Phys. Soc. II 59 (20), 140.
Krogstad, P.-Å., Kaspersen, J. H. & Rimestad, S. 1998 Convection velocities in a turbulent boundary layer. Phys. Fluids 10 (4), 949957.
Lee, J., Lee, J. H., Choi, J.-I. & Sung, H. J. 2014 Spatial organization of large- and very-large-scale motions in a turbulent channel flow. J. Fluid Mech. 749, 818840.
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to $Re_{{\it\tau}}\approx 5200$ . J. Fluid Mech. 774, 395415.
LeHew, J., Guala, M. & McKeon, B. J. 2011 A study of the three-dimensional spectral energy distribution in a zero pressure gradient turbulent boundary layer. Exp. Fluids 51, 9971012.
LeHew, J., Guala, M. & McKeon, B. J. 2013 Time-resolved measurements of coherent structures in the turbulent boundary layer. Exp. Fluids 54, 1508.
Lin, C. C. 1953 On Taylor’s hypothesis and the acceleration terms in the Navier–Stokes equations. Q. Appl. Maths 10 (4), 295306.
Mathis, R., Hutchins, N. & Marusic, I. 2011 A predictive inner–outer model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech. 681, 537566.
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.
Moin, P. 2009 Revisiting Taylor’s hypothesis. J. Fluid Mech. 640, 14.
Monty, J. P. & Chong, M. S. 2009 Turbulent channel flow: comparison of streamwise velocity data from experiments and direct numerical simulation. J. Fluid Mech. 633, 461474.
Nickels, T. B., Marusic, I., Hafez, S. & Chong, M. S. 2005 Evidence of the $k_{1}^{-1}$ law in a high-Reynolds-number turbulent boundary layer. Phys. Rev. Lett. 95 (7), 074501.
Perry, A. E. & Abell, C. J. 1975 Scaling laws for pipe-flow turbulence. J. Fluid Mech. 67 (2), 257271.
Renard, N. & Deck, S. 2015 On the scale-dependent turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds number $R_{{\it\theta}}=13000$ . J. Fluid Mech. 775, 105148.
Romano, G. P. 1995 Analysis of two-point velocity measurements in near-wall flows. Exp. Fluids 20, 6883.
Rosenberg, B. J., Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J. 2013 Turbulence spectra in smooth- and rough-wall pipe flow at extreme Reynolds numbers. J. Fluid Mech. 731, 4663.
Taylor, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. 164 (919), 476490.
Vallikivi, M., Ganapathisubramani, B. & Smits, A. J. 2015 Spectral scaling in boundary layers and pipes at very high Reynolds numbers. J. Fluid Mech. 771, 303326.
Wilczek, M., Stevens, R. J. A. M. & Meneveau, C. 2015 Spatio-temporal spectra in the logarithmic layer of wall turbulence: large-eddy simulations and simple models. J. Fluid Mech. 769, R1.
Wills, J. A. B. 1964 Convection velocities in turbulent shear flows. J. Fluid Mech. 20, 417432.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Frequency–wavenumber mapping in turbulent shear flows

  • Roeland de Kat (a1) and Bharathram Ganapathisubramani (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.