Skip to main content
×
×
Home

Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer

  • Peter P. Sullivan (a1) and James C. McWilliams (a2)
Abstract

The evolution of upper ocean currents involves a set of complex, poorly understood interactions between submesoscale turbulence (e.g. density fronts and filaments and coherent vortices) and smaller-scale boundary-layer turbulence. Here we simulate the lifecycle of a cold (dense) filament undergoing frontogenesis in the presence of turbulence generated by surface stress and/or buoyancy loss. This phenomenon is examined in large-eddy simulations with resolved turbulent motions in large horizontal domains using ${\sim}10^{10}$ grid points. Steady winds are oriented in directions perpendicular or parallel to the filament axis. Due to turbulent vertical momentum mixing, cold filaments generate a potent two-celled secondary circulation in the cross-filament plane that is frontogenetic, sharpens the cross-filament buoyancy and horizontal velocity gradients and blocks Ekman buoyancy flux across the cold filament core towards the warm filament edge. Within less than a day, the frontogenesis is arrested at a small width, ${\approx}100~\text{m}$ , primarily by an enhancement of the turbulence through a small submesoscale, horizontal shear instability of the sharpened filament, followed by a subsequent slow decay of the filament by further turbulent mixing. The boundary-layer turbulence is inhomogeneous and non-stationary in relation to the evolving submesoscale currents and density stratification. The occurrence of frontogenesis and arrest are qualitatively similar with varying stress direction or with convective cooling, but the detailed evolution and flow structure differ among the cases. Thus submesoscale filament frontogenesis caused by boundary-layer turbulence, frontal arrest by frontal instability and frontal decay by forward energy cascade, and turbulent mixing are generic processes in the upper ocean.

Copyright
Corresponding author
Email address for correspondence: pps@ucar.edu
References
Hide All
Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.
Boccaletti, G., Ferrari, R. & Fox-Kemper, B. 2007 Mixed layer instabilities and restratification. J. Phys. Oceanogr. 37, 22282250.
Capet, X., McWilliams, J. C., Molemaker, M. J. & Shchepetkin, A. 2008 Mesoscale to submesoscale transition in the California current cystem. II: frontal processes. J. Phys. Oceanogr. 38, 4464.
Cornejo, P. & Sepúlveda, H. H. 2016 Computational fluid dynamics modelling of a midlatitude small scale upper ocean front. J. Appl. Fluid Mech. 9, 18511863.
Deardorff, J. W. 1972a Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci. 29, 91115.
Deardorff, J. W. 1972b Three-dimensional numerical modeling of the planetary boundary layer. In Workshop on Micrometeorology (ed. Haugen, D. A.), pp. 271311. American Meteorological Society.
Fox-Kemper, B., Ferrari, R. & Hallberg, R. W. 2008 Parameterization of mixed layer eddies. Part 1. Theory and diagnosis. J. Phys. Oceanogr. 38, 11451165.
Gill, A. E. 1982 Atmosphere-Ocean Dynamics. Academic Press.
Gula, J., Molemaker, M. J. & McWilliams, J. C. 2014 Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr. 44, 26172643.
Hamlington, P. E., Van Roekel, L. P., Fox-Kemper, B., Julien, K. & Chini, G. P. 2014 Langmuir-Submesoscale interactions: descriptive analysis of multiscale frontal spindown simulations. J. Phys. Oceanogr. 44, 22492272.
Hoskins, B. J. 1982 The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech. 14, 131151.
Hoskins, B. J. & Bretherton, F. P. 1972 Atmospheric frontogenesis models: mathematical formulation and solution. J. Atmos. Sci. 29, 1137.
Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241258.
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.
Large, W. G., McWilliams, J. C. & Doney, S. C. 1994 Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363403.
Large, W. G. & Pond, S. 1981 Open ocean flux measurements in moderate to strong winds. J. Phys. Oceanogr. 11, 324336.
Mahadevan, A. & Tandon, A. 2006 An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Model 14, 241256.
McWilliams, J. C. 2016 Submesoscale currents in the ocean. Proc. R. Soc. Lond. A 472, 132.
McWilliams, J. C. 2017 Submesoscale surface fronts and filaments: secondary circulation, buoyancy flux, and frontogenesis. J. Fluid Mech. 823, 391432.
McWilliams, J. C., Colas, F. & Molemaker, M. J. 2009a Cold filamentary intensification and oceanic surface convergence lines. Geophys. Res. Lett. 36, 15, L18602.
McWilliams, J. C., Gula, J., Molemaker, M. J., Renault, L. & Shchepetkin, A. F. 2015 Filament frontogenesis by boundary layer turbulence. J. Phys. Oceanogr. 45, 19882005.
McWilliams, J. C., Moeng, C.-H. & Sullivan, P. P. 1999 Turbulent fluxes and coherent structures in marine boundary layers: investigations by large-eddy simulation. In Air-Sea Exchange: Physics, Chemistry, Dynamics, and Statistics (ed. Geernaert, G.), pp. 507538. Kluwer.
McWilliams, J. C., Molemaker, M. J. & Olafsdottir, E. I. 2009b Linear fluctuation growth during frontogenesis. J. Phys. Oceanogr. 39, 31113129.
McWilliams, J. C., Sullivan, P. P. & Moeng, C.-H. 1997 Langmuir turbulence in the ocean. J. Fluid Mech. 334, 130.
Moeng, C.-H. 1984 A large-eddy simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41, 20522062.
Moeng, C.-H. & Sullivan, P. P. 1994 A comparison of shear and buoyancy driven planetary-boundary-layer flows. J. Atmos. Sci. 51, 9991022.
Moeng, C.-H. & Sullivan, P. P. 2015 Large-eddy simulation. In Encyclopedia of Atmospheric Sciences, 2nd edn. (ed. North, G. R., Zhang, F. & Pyle, J.), vol. 4, pp. 232240. Academic Press.
Moeng, C. H. & Wyngaard, J. C. 1988 Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci. 45, 35733587.
Özgökmen, T. M., Poje, A. C., Fischer, P. F. & Haza, A. C. 2011 Large eddy simulations of mixed layer instabilities and sampling strategies. Ocean Model. 39, 311331.
Samelson, R. M. & Skyllingstad, E. D. 2016 Frontogenesis and turbulence: a numerical simulation. J. Atmos. Sci. 73, 50255040.
Schmidt, H. & Schumann, U. 1989 Coherent structure of the convective boundary layer. J. Fluid Mech. 200, 511562.
Shchepetkin, A. F. & McWilliams, J. C. 2005 The Regional Oceanic Modeling System (ROMS): a split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Model. 9, 347404.
Skyllingstad, E. D. & Samelson, R. M. 2012 Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part I: unforced simulations. J. Phys. Oceanogr. 42, 17011716.
Sullivan, P. P. & McWilliams, J. C. 2010 Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech. 42, 1942.
Sullivan, P. P. & McWilliams, J. C. 2017 Frontal turbulence in the upper ocean boundary layer. J. Fluid Mech. (to be submitted).
Sullivan, P. P., McWilliams, J. C. & Melville, W. K. 2004 The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations. J. Fluid Mech. 507, 143174.
Sullivan, P. P., McWilliams, J. C. & Melville, W. K. 2007 Surface gravity wave effects in the oceanic boundary layer: large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech. 593, 405452.
Sullivan, P. P., McWilliams, J. C. & Moeng, C.-H. 1994 A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol. 71, 247276.
Sullivan, P. P., McWilliams, J. C. & Moeng, C.-H. 1996 A grid nesting method for large-eddy simulation of planetary boundary layer flows. Boundary-Layer Meteorol. 80, 167202.
Sullivan, P. P. & Patton, E. G. 2011 The effect of mesh resolution on convective boundary-layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci. 68, 23952415.
Sullivan, P. P., Romero, L., McWilliams, J. C. & Melville, W. K. 2012 Transient evolution of Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves. J. Phys. Oceanogr. 42, 19591980.
Suzuki, N., Fox-Kemper, B., Hamlington, P. E. & Roekel, L. P. V. 2016 Surface waves affect frontogenesis. J. Geophys. Res. Oceans 121, 35973624.
Taylor, J. R. & Ferrari, R. 2009 On the equlibration of a symmetrically unstable front via a secondary shear instability. J. Fluid Mech. 622, 103113.
Tennekes, H. & Lumley, J. L. 1972 A First Course In Turbulence. MIT Press.
Thomas, L. N. 2005 Destruction of potential vorticity by winds. J. Phys. Oceanogr. 35, 24572466.
Thomas, L. N., Ferrari, R. & Joyce, T. M. 2013 Symmetric instability in the gulf stream. Deep-Sea Res. II 91, 96110.
Thomas, L. N. & Lee, C. 2005 Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr. 35, 10861102.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 17
Total number of PDF views: 206 *
Loading metrics...

Abstract views

Total abstract views: 629 *
Loading metrics...

* Views captured on Cambridge Core between 21st December 2017 - 14th August 2018. This data will be updated every 24 hours.