Hostname: page-component-54dcc4c588-tfzs5 Total loading time: 0 Render date: 2025-10-01T02:54:51.789Z Has data issue: false hasContentIssue false

Gap vortices compensate for the lifting-surface loss of a moult-gapped flapping wing

Published online by Cambridge University Press:  18 September 2025

Chunyu Wang
Affiliation:
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
Zhaoyue Xu
Affiliation:
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
Shizhao Wang*
Affiliation:
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
Guowei He
Affiliation:
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
*
Corresponding author: Shizhao Wang, wangsz@lnm.imech.ac.cn

Abstract

The moulting of birds creates different trailing-edge gaps in their wings, which inspires the handling of damaged wings in micro-air vehicles. The effects of the moult gap on aerodynamic performance are investigated by employing a bird-inspired flapping wing model. The aerodynamic performance is evaluated by numerically solving the Navier–Stokes equations for incompressible flows. Moult-gapped wings with different gap widths and positions are compared with the original intact wing in terms of aerodynamic forces and vortex structures. It is found that the decrease in the average lift is slower than that expected from the classical aerodynamic model. The moult gap results in three-dimensional gap vortices, which interact with leading-edge vortices and tip vortices. The interaction generates a pair of parallelly arranged vortex loops on each wing. The downwash momentum associated with this pair of vortex loops is enhanced by the gap vortices. The gap-vortices-enhanced downwash compensates for the loss in the lifting surface, increasing the aerodynamic force per unit area. A composite actuator disk model is proposed based on the vortex loops. The proposed model accounts for not only the finite-span wing effects but also the vortex compensation effects, while the previous quasi-steady model only accounts for the finite-span wing effects.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alben, S. 2021 Collective locomotion of two-dimensional lattices of flapping plates. Part 2. Lattice flows and propulsive efficiency. J. Fluid Mech. 915, A21.Google Scholar
Baliga, V.B., Szabo, I. & Altshuler, D.L. 2019 Range of motion in the avian wing is strongly associated with flight behavior and body mass. Sci. Adv. 5 (10), eaaw6670.10.1126/sciadv.aaw6670CrossRefGoogle Scholar
Bhat, S.S., Zhao, J., Sheridan, J., Hourigan, K. & Thompson, M.C. 2019 Aspect ratio studies on insect wings. Phys. Fluids 31 (12), 121301.10.1063/1.5129191CrossRefGoogle Scholar
Bhat, S.S., Zhao, J., Sheridan, J., Hourigan, K. & Thompson, M.C. 2020 Effects of flapping-motion profiles on insect-wing aerodynamics. J. Fluid Mech. 884, A8.10.1017/jfm.2019.929CrossRefGoogle Scholar
Birch, D. & Lee, T. 2005 Investigation of the near-field tip vortex behind an oscillating wing. J. Fluid Mech. 544, 201241.10.1017/S0022112005006804CrossRefGoogle Scholar
Bomphrey, R.J., Nakata, T., Phillips, N. & Walker, S.M. 2017 Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature 544 (7648), 9295.10.1038/nature21727CrossRefGoogle ScholarPubMed
Buchholz, J.H.J. & Smits, A.J. 2006 On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. J. Fluid Mech. 546, 433443.10.1017/S0022112005006865CrossRefGoogle Scholar
Chai, P. 1997 Hummingbird hovering energetics during moult of primary flight feathers. J. Expl Biol. 200 (10), 15271536.10.1242/jeb.200.10.1527CrossRefGoogle ScholarPubMed
Chen, Y., Liu, Y. & Wang, S. 2025 Streamwise ram effect and tip vortex enhance the lift of a butterfly-inspired flapping wing. J. Fluid Mech. 1005, A13.10.1017/jfm.2024.1199CrossRefGoogle Scholar
Chowdhury, J. & Ringuette, M.J. 2019 A simple vortex-loop-based model for unsteady rotating wings. J. Fluid Mech. 880, 10201035.10.1017/jfm.2019.735CrossRefGoogle Scholar
Corban, B., Bauerheim, M. & Jardin, T. 2023 Discovering optimal flapping wing kinematics using active deep learning. J. Fluid Mech. 974, A54.10.1017/jfm.2023.832CrossRefGoogle Scholar
Deng, Z., Yang, Z. & Chen, W.-L. 2023 Experimental investigation of the flow control over an airfoil with owl-inspired trailing-edge modification: on the material, length, and spacing sensitivity. Phys. Fluids 35 (2), 025135.10.1063/5.0136758CrossRefGoogle Scholar
Dommasch, D.O., Sherby, S.S. & Connolly, T.F. 1961 Airplane Aerodynamics. Pitman Publishing Corporation.Google Scholar
Eldredge, J.D., Toomey, J. & Medina, A. 2010 On the roles of chord-wise flexibility in a flapping wing with hovering kinematics. J. Fluid Mech. 659, 94115.10.1017/S0022112010002363CrossRefGoogle Scholar
Feo, T.J., Field, D.J. & Prum, R.O. 2015 Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight. Proc. R. Soc. Lond. B: Biol. Sci. 282, 1803,–20142864.Google ScholarPubMed
Goren, S.L. & Wronski, S. 1966 The shape of low-speed capillary jets of Newtonian liquids. J. Fluid Mech. 25 (1), 185198.CrossRefGoogle Scholar
Hedenström, A. 2023 Effects of wing damage and moult gaps on vertebrate flight performance. J. Expl Biol. 226 (9), jeb227355.10.1242/jeb.227355CrossRefGoogle ScholarPubMed
Hedenstr̈m, A., Johansson, L.C., Wolf, M., von Busse, R., Winter, Y. & Spedding, G.R. 2007 Bat flight generates complex aerodynamic tracks. Science 316 (5826), 894897.10.1126/science.1142281CrossRefGoogle Scholar
Hedenström, A. & Sunada, S. 1999 On the aerodynamics of moult gaps in birds. J. Expl Biol. 202 (1), 6776.10.1242/jeb.202.1.67CrossRefGoogle ScholarPubMed
Hemmati, A., Van Buren, T. & Smits, A.J. 2019 Effects of trailing edge shape on vortex formation by pitching panels of small aspect ratio. Phys. Rev. Fluids 4, 033101.10.1103/PhysRevFluids.4.033101CrossRefGoogle Scholar
Henningsson, P. & Bomphrey, R.J. 2013 Span efficiency in hawkmoths. J. R. Soc. Interface 10 (84), 20130099.10.1098/rsif.2013.0099CrossRefGoogle ScholarPubMed
Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y.-C. & Ho, C.-M. 2003 Unsteady aerodynamics and flow control for flapping wing flyers. Prog. Aerosp. Sci. 39 (8), 635681.10.1016/j.paerosci.2003.04.001CrossRefGoogle Scholar
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of the 1988 summer program: Studying turbulence using numerical simulation databases, 2, pp. 193208. Center for Turbulence Research.Google Scholar
Ji, X., Wang, L., Ravi, S., Tian, F.-B., Young, J. & Lai, J.C.S. 2022 Influences of serrated trailing edge on the aerodynamic and aeroacoustic performance of a flapping wing during hovering flight. Phys. Fluids 34 (1), 011902.10.1063/5.0070450CrossRefGoogle Scholar
Jones, R.T. 1941 Correction of the lifting-line theory for the effect of the chord, Tech. Rep. NACA.Google Scholar
Kim, D., Lee, S.H. & Kim, D. 2019 Aerodynamic interaction of collective plates in side-by-side arrangement. Phys. Fluids 31 (7), 071902.CrossRefGoogle Scholar
KleinHeerenbrink, M. & Hedenström, A. 2017 Wake analysis of drag components in gliding flight of a jackdaw (Corvus monedula) during moult. Interface Focus 7 (1), 20160081.10.1098/rsfs.2016.0081CrossRefGoogle ScholarPubMed
KleinHeerenbrink, M., Johansson, L.C. & Hedenström, A. 2017 Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight. J. R. Soc. Interface 14 (130), 20170099.Google ScholarPubMed
Lee, S.H. & Kim, D. 2017 Aerodynamics of a translating comb-like plate inspired by a fairyfly wing. Phys. Fluids 29 (8), 081902.10.1063/1.4998434CrossRefGoogle Scholar
Lee, S.H., Lahooti, M. & Kim, D. 2018 Aerodynamic characteristics of unsteady gap flow in a bristled wing. Phys. Fluids 30 (7), 071901.10.1063/1.5030693CrossRefGoogle Scholar
Li, H. & Nabawy, M.R.A. 2024 Detachment of leading-edge vortex enhances wake capture force production. J. Fluid Mech. 995, A6.10.1017/jfm.2024.680CrossRefGoogle Scholar
Li, J. & Wu, Z.-N. 2015 Unsteady lift for the Wagner problem in the presence of additional leading/trailing edge vortices. J. Fluid Mech. 769, 182217.10.1017/jfm.2015.118CrossRefGoogle Scholar
Li, Z.-Y., Feng, L.-H., Kissing, J., Tropea, C. & Wang, J.-J. 2020 Experimental investigation on the leading-edge vortex formation and detachment mechanism of a pitching and plunging plate. J. Fluid Mech. 901, A17.10.1017/jfm.2020.509CrossRefGoogle Scholar
Linehan, T. & Mohseni, K. 2020 On the maintenance of an attached leading-edge vortex via model bird alula. J. Fluid Mech. 897, A17.10.1017/jfm.2020.364CrossRefGoogle Scholar
Liu, H., Wang, S. & Liu, T. 2024 Vortices and forces in biological flight: insects, birds, and bats. Annu. Rev. Fluid Mech. 56, 147170.10.1146/annurev-fluid-120821-032304CrossRefGoogle Scholar
Liu, L.-G., Du, G. & Sun, M. 2020 Aerodynamic-force production mechanisms in hovering mosquitoes. J. Fluid Mech. 898, A19.10.1017/jfm.2020.386CrossRefGoogle Scholar
Liu, T. 2006 Comparative scaling of flapping-and fixed-wing flyers. AIAA J. 44 (1), 2433.10.2514/1.4035CrossRefGoogle Scholar
Liu, T., Kuykendoll, K., Rhew, R. & Jones, S. 2006 Avian wing geometry and kinematics. AIAA J. 44 (5), 954963.10.2514/1.16224CrossRefGoogle Scholar
Lua, K.B., Lee, Y.J., Lim, T.T. & Yeo, K.S. 2016 Aerodynamic effects of elevating motion on hovering rigid hawkmothlike wings. AIAA J. 54 (8), 22472264.10.2514/1.J054326CrossRefGoogle Scholar
Lynch, M., Mandadzhiev, B. & Wissa, A. 2018 Bioinspired wingtip devices: a pathway to improve aerodynamic performance during low Reynolds number flight. Bioinspir. Biomim. 13 (3), 036003.CrossRefGoogle ScholarPubMed
Lyu, Y.Z., Zhu, H.J. & Sun, M. 2020 Wing kinematic and aerodynamic compensations for unilateral wing damage in a small phorid fly. Phys. Rev. E 101 (1), 012412.10.1103/PhysRevE.101.012412CrossRefGoogle Scholar
Marongiu, C., Tognaccini, R. & Ueno, M. 2013 Lift and lift-induced drag computation by lamb vector integration. AIAA J. 51 (6), 14201430.CrossRefGoogle Scholar
Martínez-Muriel, C., Arranz, G., García-Villalba, M. & Flores, O. 2023 Fluid–structure resonance in spanwise-flexible flapping wings. J. Fluid Mech. 964, A5.10.1017/jfm.2023.308CrossRefGoogle Scholar
Maxworthy, T. 2007 The formation and maintenance of a leading-edge vortex during the forward motion of an animal wing. J. Fluid Mech. 587, 471475.Google Scholar
Medina, A., Eldredge, J.D., Kweon, J. & Choi, H. 2015 Illustration of wing deformation effects in three-dimensional flapping flight. AIAA J. 53 (9), 26072620.10.2514/1.J053706CrossRefGoogle Scholar
Muijres, F.T., Johansson, L.C., Barfield, R., Wolf, M., Spedding, G.R. & Hedenstr̈m, A. 2008 Leading-edge vortex improves lift in slow-flying bats. Science 319 (5867), 12501253.10.1126/science.1153019CrossRefGoogle ScholarPubMed
Muijres, F.T., Bowlin, M.S., Johansson, L.C. & Hedenström, A. 2012 Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers. J. R. Soc. Interface 9 (67), 292303.Google ScholarPubMed
Muijres, F.T., Spedding, G.R., Winter, Y. & Hedenström, A. 2011 Actuator disk model and span efficiency of flapping flight in bats based on time-resolved PIV measurements. Exp. Fluids 51, 511525.10.1007/s00348-011-1067-5CrossRefGoogle Scholar
Nabawy, M.R.A. & Crowther, W.J. 2014 a On the quasi-steady aerodynamics of normal hovering flight part I: the induced power factor. J. R. Soc. Interface 11 (93), 20131196.10.1098/rsif.2013.1196CrossRefGoogle ScholarPubMed
Nabawy, M.R.A. & Crowther, W.J. 2014 b On the quasi-steady aerodynamics of normal hovering flight part II: model implementation and evaluation. J. R. Soc. Interface 11 (94), 20131197.10.1098/rsif.2013.1197CrossRefGoogle ScholarPubMed
Oh, S., Lee, B., Park, H., Choi, H. & Kim, S.-T. 2020 A numerical and theoretical study of the aerodynamic performance of a hovering rhinoceros beetle (Trypoxylus dichotomus). J. Fluid Mech. 885, A18.10.1017/jfm.2019.962CrossRefGoogle Scholar
Okamoto, M., Yasuda, K. & Azuma, A. 1996 Aerodynamic characteristics of the wings and body of a dragonfly. J. Expl Biol. 199 (2), 281294.10.1242/jeb.199.2.281CrossRefGoogle ScholarPubMed
Olivieri, S., Boragno, C., Verzicco, R. & Mazzino, A. 2019 Constructive interference in a network of elastically-bounded flapping plates. J. Fluid. Struct. 90, 334353.10.1016/j.jfluidstructs.2019.07.009CrossRefGoogle Scholar
Parslew, B. 2015 Predicting power-optimal kinematics of avian wings. J. R. Soc. Interface 12 (102), 20140953.10.1098/rsif.2014.0953CrossRefGoogle ScholarPubMed
Poelma, C., Dickson, W.B. & Dickinson, M.H. 2006 Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp. Fluids 41, 213225.10.1007/s00348-006-0172-3CrossRefGoogle Scholar
Rajabi, H., Dirks, J.-H. & Gorb, S.N. 2020 Insect wing damage: causes, consequences and compensatory mechanisms. J. Expl Biol. 223 (9), jeb215194.CrossRefGoogle ScholarPubMed
Rong, J. & Liu, H. 2022 Aeroacoustic interaction between owl-inspired trailing-edge fringes and leading-edge serrations. Phys. Fluids 34 (1), 011907.10.1063/5.0078974CrossRefGoogle Scholar
Salem, W., Cellini, B., Kabutz, H., Hari Prasad, H.K., Cheng, B., Jayaram, K. & Mongeau, J.-M. 2022 Flies trade off stability and performance via adaptive compensation to wing damage. Sci. Adv. 8 (46), eabo0719.10.1126/sciadv.abo0719CrossRefGoogle ScholarPubMed
Senar, J.C. 2002 Great tits (Parus major) reduce body mass in response to wing area reduction: a field experiment. Behav. Ecol. 13 (6), 725727.10.1093/beheco/13.6.725CrossRefGoogle Scholar
Shekar, S.C., LeBeau, R.P. & Gururajan, S. 2022 An experimental-computational investigation of damaged UAV wings–part III: detecting and locating damage using machine learning. In AIAA SCITECH 2022 Forum, 2022-2335. AIAA.Google Scholar
Shekar, S.C., LeBeau, R.P. & Gururajan, S. 2023 Computational evaluation of a damage assessment model for UAV wings. In AIAA SCITECH 2023 Forum, 2023-1950. AIAA.Google Scholar
Shyy, W., Aono, H., Chimakurthi, S.K., Trizila, P., Kang, C.-K., Cesnik, C.E.S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46 (7), 284327.10.1016/j.paerosci.2010.01.001CrossRefGoogle Scholar
Shyy, W., Trizila, P., Kang, C.-K. & Aono, H. 2009 Can tip vortices enhance lift of a flapping wing? AIAA J. 47 (2), 289293.CrossRefGoogle Scholar
Sigrest, P. & Inman, D.J. 2020 Effect of spanwise trailing edge gaps on aerodynamic performance. In AIAA Scitech 2020 Forum, 2020-2007. AIAA.10.2514/6.2020-2007CrossRefGoogle Scholar
Spalart, P.R. 2003 On the simple actuator disk. J. Fluid Mech. 494, 399405.CrossRefGoogle Scholar
Sujatha, C. 2010 Vibration and Acoustics: Measurement and Signal Analysis. McGraw-Hill Education.Google Scholar
Sullivan, T.N., Meyers, M.A. & Arzt, E. 2019 Scaling of bird wings and feathers for efficient flight. Sci. Adv. 5 (1), eaat4269.10.1126/sciadv.aat4269CrossRefGoogle Scholar
Sunada, S., Takashima, H., Hattori, T., Yasuda, K. & Kawachi, K. 2002 Fluid-dynamic characteristics of a bristled wing. J. Expl Biol. 205 (17), 27372744.10.1242/jeb.205.17.2737CrossRefGoogle ScholarPubMed
Taira, K. & Colonius, T.I.M. 2009 Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J. Fluid Mech. 623, 187207.10.1017/S0022112008005314CrossRefGoogle Scholar
Thielicke, W. & Stamhuis, E J. 2015 The influence of wing morphology on the three-dimensional flow patterns of a flapping wing at bird scale. J. Fluid Mech. 768, 240260.10.1017/jfm.2015.71CrossRefGoogle Scholar
Tobalske, B.W. & Dial, K.P. 1996 Flight kinematics of black-billed magpies and pigeons over a wide range of speeds. J. Expl Biol. 199 (2), 263280.10.1242/jeb.199.2.263CrossRefGoogle Scholar
Tomotani, B.M. & Muijres, F.T. 2019 A songbird compensates for wing molt during escape flights by reducing the molt gap and increasing angle-of-attack. J. Expl Biol. 222 (10), jeb195396.10.1242/jeb.195396CrossRefGoogle ScholarPubMed
Tong, W., Yang, Y. & Wang, S. 2021 Estimating thrust from shedding vortex surfaces in the wake of a flapping plate. J. Fluid Mech. 920, A10.CrossRefGoogle Scholar
Trizila, P., Kang, C.-K., Aono, H., Shyy, W. & Visbal, M. 2011 Low-Reynolds-number aerodynamics of a flapping rigid flat plate. AIAA J. 49 (4), 806823.10.2514/1.J050827CrossRefGoogle Scholar
Tucker, V.A. 1987 Gliding birds: the effect of variable wing span. J. Expl Biol. 133 (1), 3358.10.1242/jeb.133.1.33CrossRefGoogle Scholar
Tucker, V.A. 1991 The effect of molting on the gliding performance of a Harris’ hawk (Parabuteo unicinctus). The Auk 108 (1), 108113.Google Scholar
Tucker, V.A. 1995 Drag reduction by wing tip slots in a gliding Harris’ hawk, Parabuteo unicinctus . J. Expl Biol. 198 (3), 775781.10.1242/jeb.198.3.775CrossRefGoogle Scholar
Tucker, V.A. & Heine, C. 1990 Aerodynamics of gliding flight in a harris’ hawk, Parabuteo Unicinctus . J. Expl Biol. 149 (1), 469489.Google Scholar
Van Buren, T., Floryan, D., Brunner, D., Senturk, U. & Smits, A.J. 2017 Impact of trailing edge shape on the wake and propulsive performance of pitching panels. Phys. Rev. Fluids 2 (1), 014702.10.1103/PhysRevFluids.2.014702CrossRefGoogle Scholar
Videler, J.J., Stamhuis, E.J. & Povel, G.D.E. 2004 Leading-edge vortex lifts swifts. Science 306 (5703), 19601962.10.1126/science.1104682CrossRefGoogle ScholarPubMed
Von, E., Karl, D., Parker, K. & Soria, J. 2003 Flow structures behind a heaving and pitching finite-span wing. J. Fluid Mech. 490, 129138.Google Scholar
Wang, C., Liu, Y., Xu, D. & Wang, S. 2022 Aerodynamic performance of a bio-inspired flapping wing with local sweep morphing. Phys. Fluids 34 (5), 051903.10.1063/5.0090718CrossRefGoogle Scholar
Wang, C., Xu, Z., Zhang, X. & Wang, S. 2021 Optimal reduced frequency for the power efficiency of a flat plate gliding with spanwise oscillations. Phys. Fluids 33 (11), 111908.10.1063/5.0071088CrossRefGoogle Scholar
Wang, S., He, G. & Liu, T. 2019 Estimating lift from wake velocity data in flapping flight. J. Fluid Mech. 868, 501537.10.1017/jfm.2019.181CrossRefGoogle Scholar
Wang, S., He, G. & Zhang, X. 2013 a Parallel computing strategy for a flow solver based on immersed boundary method and discrete stream-function formulation. Comput. Fluids 88, 210224.10.1016/j.compfluid.2013.09.001CrossRefGoogle Scholar
Wang, S., He, G. & Zhang, X. 2015 a Lift enhancement on spanwise oscillating flat-plates in low-Reynolds-number flows. Phys. Fluids 27 (6).10.1063/1.4922236CrossRefGoogle Scholar
Wang, S. & Zhang, X. 2011 An immersed boundary method based on discrete stream function formulation for two-and three-dimensional incompressible flows. J. Comput. Phys. 230 (9), 34793499.10.1016/j.jcp.2011.01.045CrossRefGoogle Scholar
Wang, S., Zhang, X., He, G. & Liu, T. 2013 b A lift formula applied to low-Reynolds-number unsteady flows. Phys. Fluids 25 (9).10.1063/1.4821520CrossRefGoogle Scholar
Wang, S., Zhang, X., He, G. & Liu, T. 2015 b Evaluation of lift formulas applied to low-Reynolds-number unsteady flows. AIAA J. 53 (1), 161175.10.2514/1.J053042CrossRefGoogle Scholar
Wang, X.X. & Wu, Z.N. 2010 Stroke-averaged lift forces due to vortex rings and their mutual interactions for a flapping flight model. J. Fluid Mech. 654, 453472.10.1017/S0022112010000613CrossRefGoogle Scholar
Whitcomb, R.T. 1976 A design approach and selected wind tunnel results at high subsonic speeds for wing-tip mounted winglets, Tech. Rep. NASA.Google Scholar
Wolf, M., Johansson, L.C., von Busse, R., Winter, Y. & Hedenström, A. 2010 Kinematics of flight and the relationship to the vortex wake of a Pallas’ long tongued bat (Glossophaga soricina). J. Expl Biol. 213 (12), 21422153.10.1242/jeb.029777CrossRefGoogle Scholar
Wu, J.-Z., Lu, X.-Y. & Zhuang, L.-X. 2007 Integral force acting on a body due to local flow structures. J. Fluid Mech. 576, 265286.10.1017/S0022112006004551CrossRefGoogle Scholar
Yilmaz, T.O. & Rockwell, D. 2012 Flow structure on finite-span wings due to pitch-up motion. J. Fluid Mech. 691, 518545.10.1017/jfm.2011.490CrossRefGoogle Scholar
Zhang, C., Huang, H. & Lu, X.-Y. 2020 Effect of trailing-edge shape on the self-propulsive performance of heaving flexible plates. J. Fluid Mech. 887, A7.10.1017/jfm.2019.1076CrossRefGoogle Scholar
Zhang, D., Zhang, J.-D. & Huang, W.-X. 2022 Physical models and vortex dynamics of swimming and flying: a review. Acta Mechanica 233 (4), 12491288.10.1007/s00707-022-03192-9CrossRefGoogle Scholar
Zhang, X., He, G., Wang, S. & Zhang, X. 2019 Passive hovering of a flexible-flyer in a vertically oscillating airflow. J. Fluid Mech. 878, 113146.10.1017/jfm.2019.633CrossRefGoogle Scholar