No CrossRef data available.
Published online by Cambridge University Press: 18 September 2025
The moulting of birds creates different trailing-edge gaps in their wings, which inspires the handling of damaged wings in micro-air vehicles. The effects of the moult gap on aerodynamic performance are investigated by employing a bird-inspired flapping wing model. The aerodynamic performance is evaluated by numerically solving the Navier–Stokes equations for incompressible flows. Moult-gapped wings with different gap widths and positions are compared with the original intact wing in terms of aerodynamic forces and vortex structures. It is found that the decrease in the average lift is slower than that expected from the classical aerodynamic model. The moult gap results in three-dimensional gap vortices, which interact with leading-edge vortices and tip vortices. The interaction generates a pair of parallelly arranged vortex loops on each wing. The downwash momentum associated with this pair of vortex loops is enhanced by the gap vortices. The gap-vortices-enhanced downwash compensates for the loss in the lifting surface, increasing the aerodynamic force per unit area. A composite actuator disk model is proposed based on the vortex loops. The proposed model accounts for not only the finite-span wing effects but also the vortex compensation effects, while the previous quasi-steady model only accounts for the finite-span wing effects.