Hostname: page-component-76c49bb84f-ckhzl Total loading time: 0 Render date: 2025-07-03T19:34:56.923Z Has data issue: false hasContentIssue false

A generalised multiparameter linear stability and sensitivity analysis method

Published online by Cambridge University Press:  15 May 2025

Zi-Han Zhang
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
Jun-Hua Pan
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics and University of Chinese Academy of Sciences, Beijing 100190, PR China
Ming-Jiu Ni*
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics and University of Chinese Academy of Sciences, Beijing 100190, PR China
*
Corresponding author: Ming-Jiu Ni, mjni@ucas.ac.cn

Abstract

A generalised multiparameter model for linear modal stability and sensitivity analysis is developed. The stability and sensitivity equations are derived from a generalised vector-form governing equation comprised of multiple dimensionless parameters that represent different physical forces affecting the system’s stability. By introducing adjoint variables and constructing the Lagrangian identity, a differential relationship between the eigenvalue of the perturbation mode and dimensionless parameters is determined and defined as the global sensitivity gradient. It provides the constraint that must be satisfied for changes in different dimensionless parameters along the isoeigenvalue curve, which aids in the fast computation of the neutral curve. Moreover, the global sensitivity gradient can directly and intuitively evaluate the competitive relationship among the influences of various parameters on system instability. Based on the global sensitivity gradient, an optimal stability control strategy for transitioning from an unstable state to a stable state is discussed. Additionally, the relative sensitivity function is also introduced to investigate the influence of relative parameter variations on instability. To demonstrate the effectiveness of this method, three applications are presented: two-dimensional flow around a circular cylinder with a single dimensionless parameter Re; three-dimensional axisymmetric magnetohydrodynamic (MHD) flow around a sphere with two parameters Re and $N$; and two-dimensional MHD mixed convection with three parameters Re, ${\textit{Gr}}$ and $\textit{Ha}$.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

These authors contributed equally to this work and should be considered co-first authors.

References

Akhmedagaev, R., Zikanov, O., Krasnov, D. & Schumacher, J. 2020 Turbulent Rayleigh–Bénard convection in a strong vertical magnetic field. J. Fluid Mech. 895, R4.CrossRefGoogle Scholar
Bagchi, P. & Balachandar, S. 2002 Steady planar straining flow past a rigid sphere at moderate Reynolds number. J. Fluid Mech. 466, 365407.CrossRefGoogle Scholar
Bagheri, S., Schlatter, P., Schmid, P.J. & Henningson, D.S. 2009 Global stability of a jet in crossflow. J. Fluid Mech. 624, 3344.CrossRefGoogle Scholar
Bottaro, A., Corbett, P. & Luchini, P. 2003 The effect of base flow variation on flow stability. J. Fluid Mech. 476, 293302.CrossRefGoogle Scholar
Boujo, E. 2021 Second-order adjoint-based sensitivity for hydrodynamic stability and control. J. Fluid Mech. 920, A12.CrossRefGoogle Scholar
Butler, K.M. & Farrell, B.F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4 (8), 16371650.CrossRefGoogle Scholar
Chedevergne, F., Casalis, G. & Feraille, T. 2006 Biglobal linear stability analysis of the flow induced by wall injection. Phys. Fluids 18 (1), 014103.CrossRefGoogle Scholar
Chomaz, J.M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37 (1), 357392.CrossRefGoogle Scholar
Chomaz, J.M., Huerre, P. & Redekopp, L.G. 1988 Bifurcations to local and global modes in spatially developing flows. Phys. Rev. Lett. 60 (1), 2528.CrossRefGoogle ScholarPubMed
Citro, V., Giannetti, F., Brandt, L. & Luchini, P. 2015 a Linear three-dimensional global and asymptotic stability analysis of incompressible open cavity flow. J. Fluid Mech. 768, 113140.CrossRefGoogle Scholar
Citro, V., Giannetti, F., Luchini, P. & Auteri, F. 2015 b Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element. Phys. Fluids 27 (8), 084110.CrossRefGoogle Scholar
Clift, R., Grace, J.R. & Weber, M.E. 2005 Bubbles, Drops, and Particles. Courier Corporation.Google Scholar
Eckhardt, B., Schneider, T.M., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39 (1), 447468.CrossRefGoogle Scholar
Fang, Y.B., Du, L., He, C., Sun, D.K., Yang, L.J., Fu, Q.F. & Sun, X.F. 2024 Biglobal stability analysis for flow in complex geometry based on immersed boundary method. J. Comput. Phys. 497, 112630.CrossRefGoogle Scholar
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.CrossRefGoogle Scholar
Govindarajan, R. & Sahu, K.C. 2014 Instabilities in viscosity-stratified flow. Annu. Rev. Fluid Mech. 46 (1), 331353.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.CrossRefGoogle Scholar
Kerswell, R.R. 2018 Nonlinear nonmodal stability theory. Annu. Rev. Fluid Mech. 50 (1), 319345.CrossRefGoogle Scholar
Khalak, A. 2002 A framework for flutter clearance of aeroengine blades. Trans. ASME J. Engng Gas Turbines Power 124 (4), 10031010.CrossRefGoogle Scholar
Luchini, P. & Bottaro, A. 2014 Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46 (1), 493517.CrossRefGoogle Scholar
Marquet, O., Sipp, D. & Jacquin, L. 2008 Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech. 615, 221252.CrossRefGoogle Scholar
Mathai, V., Zhu, X.J., Sun, C. & Lohse, D. 2018 Flutter to tumble transition of buoyant spheres triggered by rotational inertia changes. Nat. Commun. 9 (1), 1792.CrossRefGoogle ScholarPubMed
Mistrangelo, C. & Bühler, L. 2016 Magneto-convective instabilities in horizontal cavities. Phys. Fluids 28 (2), 024104.CrossRefGoogle Scholar
Moulin, J., Jolivet, P. & Marquet, O. 2019 Augmented lagrangian preconditioner for large-scale hydrodynamic stability analysis. Comput. Meth. Appl. Mech. Engng 351, 718743.CrossRefGoogle Scholar
Nastro, G., Robinet, J.-C., Loiseau, J.-C., Passaggia, P.-Y. & Mazellier, N. 2023 Global stability, sensitivity and passive control of low-Reynolds-number flows around NACA 4412 swept wings. J. Fluid Mech. 957, A5.CrossRefGoogle Scholar
Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323344.CrossRefGoogle Scholar
Ni, M.-J., Munipalli, R., Huang, P., Morley, N.B. & Abdou, M.A. 2007 A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: on an arbitrary collocated mesh. J. Comput. Phys. 227 (1), 205228.CrossRefGoogle Scholar
Ohmichi, Y. & Yamada, K. 2021 Matrix-free triglobal adjoint stability analysis of compressible Navier–Stokes equations. J. Comput. Phys. 437, 110332.CrossRefGoogle Scholar
Ozsunar, A., Baskaya, S. & Sivrioglu, M. 2001 Numerical analysis of Grashof number, Reynolds number and inclination effects on mixed convection heat transfer in rectangular channels. Intl Commun. Heat Mass Transfer 28 (7), 985994.CrossRefGoogle Scholar
Pan, J.-H., Ni, M.-J. & Zhang, N.-M. 2018 a A consistent and conservative immersed boundary method for MHD flows and moving boundary problems. J. Comput. Phys. 373, 425445.CrossRefGoogle Scholar
Pan, J.-H., Zhang, N.-M. & Ni, M.-J. 2018 b The wake structure and transition process of a flow past a sphere affected by a streamwise magnetic field. J. Fluid Mech. 842, 248272.CrossRefGoogle Scholar
Pierrehumbert, R.T. & Widnall, S. 1982 The two- and three-dimensional instabilities of a spatially periodic shear layer. J. Fluid Mech. 114, 5982.CrossRefGoogle Scholar
Piot, E., Casalis, G. & Rist, U. 2008 Stability of the laminar boundary layer flow encountering a row of roughness elements: biglobal stability approach and DNS. Eur. J. Mech. B/Fluids. 27 (6), 684706.CrossRefGoogle Scholar
Priede, J., Aleksandrova, S. & Molokov, S. 2010 Linear stability of Hunt’s flow. J. Fluid Mech. 649, 115134.CrossRefGoogle Scholar
Saglietti, C., Schlatter, P., Monokrousos, A. & Henningson, D.S. 2017 Adjoint optimization of natural convection problems: differentially heated cavity. Theor. Comput. Fluid Dyn. 31 (5-6), 537553.CrossRefGoogle Scholar
Schneider, R. 2006 Applications of the discrete adjoint method in computational fluid dynamics. PhD thesis, University of Leeds, UK.Google Scholar
Strykowski, P.J. & Sreenivasan, K.R. 1990 On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers. J. Fluid Mech. 218, 71107.CrossRefGoogle Scholar
Tammisola, O., Giannetti, F., Citro, V. & Juniper, M.P. 2014 Second–order perturbation of global modes and implications for spanwise wavy actuation. J. Fluid Mech. 755, 314335.CrossRefGoogle Scholar
Tchoufag, J., Magnaudet, J. & Fabre, D. 2013 Linear stability and sensitivity of the flow past a fixed oblate spheroidal bubble. Phys. Fluids. 25 (5), 054108.CrossRefGoogle Scholar
Tezuka, A. & Suzuki, K. 2006 Three-dimensional global linear stability analysis of flow around a spheroid. AIAA J. 44 (8), 16971708.CrossRefGoogle Scholar
Theofilis, V. 2003 Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39 (4), 249315.CrossRefGoogle Scholar
Theofilis, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43 (1), 319352.CrossRefGoogle Scholar
Yuan, W. & Zhang, X. 2023 Numerical stabilization for flutter analysis procedure. Aerospace. 10 (3), 302.CrossRefGoogle Scholar
Zhang, W. & Samtaney, R. 2016 Biglobal linear stability analysis on low-Re flow past an airfoil at high angle of attack. Phys. Fluid. 28 (4), 044015.CrossRefGoogle Scholar
Zheng, X.-L., Pan, J.-H. & Ni, M.-J. 2023 Linear global stability of a flow past a sphere under a streamwise magnetic field. J. Fluid Mech. 970, A16.CrossRefGoogle Scholar