Skip to main content Accessibility help
×
Home

A generalized mean-field model of the natural and high-frequency actuated flow around a high-lift configuration

  • DIRK M. LUCHTENBURG (a1), BERT GÜNTHER (a1), BERND R. NOACK (a1), RUDIBERT KING (a2) and GILEAD TADMOR (a3)...

Abstract

A low-dimensional Galerkin model is proposed for the flow around a high-lift configuration, describing natural vortex shedding, the high-frequency actuated flow with increased lift and transients between both states. The form of the dynamical system has been derived from a generalized mean-field consideration. Steady state and transient URANS (unsteady Reynolds-averaged Navier–Stokes) simulation data are employed to derive the expansion modes and to calibrate the system parameters. The model identifies the mean field as the mediator between the high-frequency actuation and the low-frequency natural shedding instability.

Copyright

Corresponding author

Email address for correspondence: dirk.m.luchtenburg@tu-berlin.de

References

Hide All
Amitay, M. & Glezer, A. 2002 Controlled transients of flow reattachment over stalled airfoils. Intl J. Heat Transfer and Fluid Flow 23, 690699.
Aubry, N., Holmes, P., Lumley, J. L. & Stone, E. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115173.
Ausseur, J. M. & Pinier, J. T. 2005 Towards closed-loop feedback control of the flow over NACA-4412 airfoil. AIAA Paper 2005–0343.
Becker, R., King, R., Petz, R. & Nitsche, W. 2007 Adaptive closed-loop separation control on a high-lift configuration using extremum seeking. AIAA J. 45 (6), 13821392.
Bergmann, M., Cordier, L. & Brancher, J.-P. 2005 Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced order model. Phys. Fluids 17 (097101), 121.
Collis, S. S., Joslin, R. D., Seifert, A. & Theofilis, V. 2004 Issues in active flow control: theory, control, simulation, and experiment. Prog. Aerosp. Sci. 40, 237289.
Couplet, M., Sagaut, P. & Basdevant, C. 2003 Intermodal energy transfers in a proper orthogonal decomposition – Galerkin representation of a turbulent separated flow. J. Fluid Mech. 491, 275284.
Dusek, J., Le Gal, P. & Fraunié, P. 1994 A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake. J. Fluid Mech. 264, 5980.
Favier, J., Cordier, L. & Kourta, A. In press Accurate POD reduced-order models of separated flows. Phys. Fluids.
Fletcher, C. A. J. 1984 Computational Galerkin Methods. Springer-Verlag.
Gad-el-Hak, M. 1996 Modern developments in flow control. Appl. Mech. Rev. 49, 365379.
Gad-el-Hak, M. 2000 Flow Control: Passive, Active and Reactive Flow Management. Cambridge University Press.
Galletti, G., Bruneau, C. H., Zannetti, L. & Iollo, A. 2004 Low-order modelling of laminar flow regimes past a confined square cylinder. J. Fluid Mech. 503, 161170.
Gerhard, J., Pastoor, M., King, R., Noack, B. R., Dillmann, A., Morzyński, M. & Tadmor, G. 2003 Model-based control of vortex shedding using low-dimensional Galerkin models. AIAA Paper 2003-4262.
Graham, W. R., Peraire, J. & Tang, K. Y. 1999 Optimal control of vortex shedding using low-order models. Part I: Open-loop model development. Int. J. Num. Meth. Eng. 44, 945972.
Günther, B., Thiele, F., Petz, R., Nitsche, W., Sahner, J., Weinkauf, T. & Hege, H. C. 2007 Control of separation on the flap of a three element high-lift configuration. AIAA Paper 2007-0265.
Henning, L., Pastoor, M., Noack, B. R., King, R. & Tadmor, G. 2007 Feedback control applied to the bluff body wake. In Active Flow Control (ed. King, R.), Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 95, pp. 369390. Springer-Verlag.
Holmes, P., Lumley, J. L. & Berkooz, G. 1998 Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press.
Hu, G.-H., Sun, D.-J., Yin, X.-Y. & Tong, B.-G. 1996 Hopf bifurcation in wakes behind a rotating and translating circular cylinder. Phys. Fluids 8, 19721974.
Kaepernick, K., Koop, L. & Ehrenfried, K. 2005 Investigation of the unsteady flow field inside a leading edge slat cove. AIAA Paper 2005–2813.
King, R. (Ed.) 2007 Active Flow Control, Notes on Numerical Fluid Mechanics and Interdisciplinary Design, vol. 95. Springer-Verlag.
Ladyzhenskaya, O. A. 1963 The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach.
Luchtenburg, D. M., Tadmor, G., Lehmann, O., Noack, B. R., King, R. & Morzyński, M. 2006 Tuned POD Galerkin models for transient feedback regulation of the cylinder wake. AIAA Paper 2006-1407.
Maurel, A., Pagneux, V. & Wesfreid, J. E. 1995 Mean-flow correction as a non-linear saturation mechanism. Europhysics Lett. 32, 217222.
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics I. The MIT Press.
Noack, B. R. 2006 Niederdimensionale Galerkin-Modelle für laminare und transitionelle freie Scherströmungen (transl. Low-dimensional Galerkin models of laminar and transitional free shear flows). Habilitation thesis, Fakultät V – Verkehrs- und Maschinensysteme, Berlin Institute of Technology, Germany.
Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.
Noack, B. R. & Copeland, G. S. 2000 On a stability property of ensemble-averaged flow. Tech. Rep. 03/2000. Hermann-Föttinger-Institut für Strömungsmechanik, Berlin Institute of Technology.
Noack, B. R. & Eckelmann, H. 1994 A low-dimensional Galerkin method for the three-dimensional flow around a circular cylinder. Phys. Fluids 6, 124143.
Noack, B. R., Papas, P. & Monkewitz, P. A. 2005 The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339365.
Noack, B. R., Pelivan, I., Tadmor, G., Morzyński, M. & Comte, P. 2004 a Robust low-dimensional Galerkin models of natural and actuated flows. In Proceedings of the Fourth Aeroacoustics Workshop, RWTH Aachen, February 26–27, 2004 (ed. Schröder, W. & Tröltzsch, P.). Institut für Akustik und Sprachkommunikation, Technical University of Dresden.
Noack, B. R., Schlegel, M., Ahlborn, B., Mutschke, G., Morzyński, M., Comte, P. & Tadmor, G. 2008 A finite-time thermodynamics of unsteady fluid flows. J. Non-Equilib. Thermodyn. 33 (2), 103148.
Noack, B. R., Tadmor, G. & Morzyński, M. 2004 b Actuation models and dissipative control in empirical Galerkin models of fluid flows. In Proceedings of the 2004 American Control Conference, pp. 5722–5727. American Automatic Control Council (AACC), Dayton, OH, USA.
Noack, B. R., Tadmor, G. & Morzyński, M. 2004 c Low-dimensional models for feedback flow control. Part I. Empirical Galerkin models. AIAA Paper 2004-2408.
Pastoor, M., Henning, L., Noack, B. R., King, R. & Tadmor, G. 2008 Feedback shear layer control for bluff body drag reduction. J. Fluid Mech. 608, 161196.
Pastoor, M., Noack, B. R., King, R. & Tadmor, G. 2006 Spatiotemporal waveform observers and feedback in shear layer control. AIAA Paper 2006-1402.
Raju, R. & Mittal, R. 2002 Towards physics based strategies for separation control over an airfoil using synthetic jets. AIAA Paper 2007-1421.
Rediniotis, O. K., Ko, J. & Kurdila, A. J. 2002 Reduced order nonlinear Navier–Stokes models for synthetic jets. J. Fluids Engng 124, 433443.
Rempfer, D. & Fasel, F. H. 1994 Dynamics of three-dimensional coherent structures in a flat-plate boundary-layer. J. Fluid Mech. 275, 257283.
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical model and comparisons with experiments. J. Fluid Mech. 54, 263288.
Rowley, C. W. & Juttijudata, V. 2005 Model-based control and estimation of cavity flow oscillations. In Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference, pp. 512–517. European Union Control Association (EUCA), Saint-Martin d'Hères, France.
Rummler, B. 2000 Zur Lösung der instationären inkompressiblen Navier-Stokesschen Gleichungen in speziellen Gebieten (transl. On the solution of the incompressible Navier–Stokes equations in special domains). Habilitation thesis. Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg.
Rung, T. & Thiele, F. 1996 Computational modelling of complex boundary layer flows. In Proceedings of the 9th International Symposium on Transport Phenomena in Thermal-Fluids Engineering, pp. 321–326. Singapore.
Samimy, M., Debiasi, M., Caraballo, E., Serrani, A., Yuan, X., Little, J. & Myatt, J. 2007 Feedback control of subsonic cavity flows using reduced-order models. J. Fluid Mech. 579, 315346.
Schatz, M., Günther, B. & Thiele, F. 2006 Computational investigation of separation control over high-lift airfoil flows. In Active Flow Control (ed. King, R.), Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 95, pp. 260278. Springer-Verlag.
Seifert, A., Darabi, A. & Wygnanski, I. 1996 On the delay of airfoil stall by periodic excitation. J. Aircraft 33 (4), 691699.
Siegel, S., Cohen, K. & McLaughlin, T. 2003 Feedback control of a circular cylinder wake in experiment and simulation. AIAA Paper 2003-3569.
Siegel, S. G., Seidel, J., Fagley, C., Luchtenburg, D. M., Cohen, K. & McLaughlin, T. 2008 Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition. J. Fluid Mech. 610, 142.
Stuart, J. T. 1958 On the non-linear mechanics of hydrodynamic stability. J. Fluid Mech. 4, 121.
Tadmor, G., Gonzalez, J., Lehmann, O., Noack, B. R., Morzyński, M. & Stankiewicz, W. 2007 Shift modes and transient dynamics in low order, design oriented Galerkin models. AIAA Paper 2007-0111.
Tadmor, G., Noack, B. R., Morzyński, M. & Siegel, S. 2004 Low-dimensional models for feedback flow control. Part II. Controller design and dynamic estimation. AIAA Paper 2004-2409.
Ukeiley, L., Cordier, L., Manceau, R., Delville, J., Bonnet, J. P. & Glauser, M. 2001 Examination of large-scale structures in a turbulent plane mixing layer. Part 2. Dynamical systems model. J. Fluid Mech. 441, 61108.
Zielinska, B. J. A., GoujonDurand, S., Dusek, J. & Wesfreid, J. 1997 Strongly nonlinear effect in unstable wakes. Phys. Rev. Lett. 79, 38933896.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

A generalized mean-field model of the natural and high-frequency actuated flow around a high-lift configuration

  • DIRK M. LUCHTENBURG (a1), BERT GÜNTHER (a1), BERND R. NOACK (a1), RUDIBERT KING (a2) and GILEAD TADMOR (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.