Skip to main content Accessibility help

Generation of secondary droplets in coalescence of a drop at a liquid–liquid interface

  • B. RAY (a1), G. BISWAS (a1) and A. SHARMA (a2)

When a droplet of liquid 1 falls through liquid 2 to eventually hit the liquid 2–liquid 1 interface, its initial impact on the interface can produce daughter droplets of liquid 1. In some cases, a partial coalescence cascade governed by self-similar capillary-inertial dynamics is observed, where the fall of the secondary droplets in turn continues to produce further daughter droplets. Results show that inertia and interfacial surface tension forces largely govern the process of partial coalescence. The partial coalescence is suppressed by the viscous force when Ohnesorge number is below a critical value and also by gravity force when Bond number exceeds a critical value. Generation of secondary drop is observed for systems of lower Ohnesorge number for liquid 1, lower and intermediate Ohnesorge number for liquid 2 and for low and intermediate values of Bond number. Whenever the horizontal momentum in the liquid column is more than the vertical momentum, secondary drop is formed. A transition regime from partial to complete coalescence is obtained when the neck radius oscillates twice. In this regime, the main body of the column can be fitted to power-law scaling model within a specific time range. We investigated the conditions and the outcome of these coalescence events based on numerical simulations using a coupled level set and volume of fluid method (CLSVOF).

Corresponding author
Email address for correspondence:
Hide All
Agarwal, D. K., Welch, S. W. J., Biswas, G. & Durst, F. 2004 Planar simulation of bubble growth in film boiling in near-critical water using a variant of the VOF method. J. Heat Transfer 126, 329338.
Aryafar, H. & Kavehpour, H. P. 2006 Drop coalescence through planar surfaces. Phys. Fluids 18, 072105(1)072105(6).
Berry, E. X. & Reinhardt, R. L. 1974 Analysis of cloud drop growth by collection. III. Accretion and self-collection. J. Atmos. Sci. 31, 21182126.
Bhakta, A. & Ruckenstein, E. 1997 Decay of standing foams: drainage, coalescence and collapse. Adv. Colloid Interface Sci. 70, 1124.
Blanchette, F. & Bigioni, T. P. 2006 Partial coalescence of drops at liquid interfaces. Nat. Phys. 2, 254257.
Blanchette, F. & Bigioni, T. P. 2009 Dynamics of drop coalescence at fluid interfaces. J. Fluid Mech. 620, 333352.
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modelling surface tension. J. Comput. Phys. 100, 335354.
Cai, Y. K. 1989 Phenomena of a liquid drop falling to a liquid surface. Exp. Fluids. 7, 388394.
Chakraborty, I., Ray, B., Biswas, G., Durst, F., Sharma, A. & Ghoshdastidar, P. S. 2009 Computational investigation on bubble detachment from submerged orifice in quiescent liquid under normal and reduced gravity. Phys. Fluids 21, 062103(1)–062103(17).
Chang, Y. C., Hou, T. Y., Merriman, B. & Osher, S. 1996 A level-set formulation of eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124, 449464.
Charles, G. E. & Mason, S. G. 1960 a The coalescence of liquid drops with flat liquid/liquid interfaces. J. Colloid Sci. 15, 236267.
Charles, G. E. & Mason, S. G. 1960 b The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces. J. Colloid Sci. 15, 105122.
Chen, X., Mandre, S. & Feng, J. J. 2006 a Partial coalescence between a drop and a liquid–liquid interface. Phys. Fluids 18, 051705(1)051705(4).
Chen, X., Mandre, S. & Feng, J. J. 2006 b An experimental study of the coalescence between a drop and an interface in newtonian and polymeric liquids. Phys. Fluids 18, 092103(1)092103(14).
Ching, B., Golay, M. W. & Johnson, T. J. 1984 Droplet impacts upon liquid surfaces. Science 226, 535537.
Deng, Q., Anilkumar, A. V. & Wang, T. G. 2007 The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool. J. Fluid Mech. 578, 119138.
Duchemin, L., Josserand, C. & Clavin, P. 2005 Asymptotic behaviour of the Rayleigh–Taylor instability. Phys. Rev. L 94, 224501(1)224501(4).
Duchemin, L., Popinet, S., Josserand, C. & Zaleski, S. 2002 Jet formation in bubbles bursting at free surface. Phys. Fluids 14, 30003008.
Fedorchenko, A. I. & Wang, A. B. 2004 On some common features of drop impact on liquid surfaces. Phys. Fluids. 16, 13491365.
Gerlach, D., Tomar, G., Biwas, G. & Durst, F. 2006 Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows. Intl J. Heat Mass Transfer 49, 740754.
Gilet, T., Mulleners, K., Lecomte, J. P., Vandewalle, N. & Dorbolo, S. 2007 a Critical parameters for the partial coalescence of a droplet. Phys. Rev. E 75, 036303(1)036303(14).
Gilet, T., Vandewalle, N. & Dorbolo, S. 2007 b Controlling the partial coalescence of a droplet on a vertically vibrated bath. Phys. Rev. E 76, 035302(1)035302(4).
Harlow, F. H. & Welch, J. E. 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 21822189.
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201225.
Hogrefe, J. E., Peffley, N. L., Goodridge, C. L., Shi, W. T., Hentschel, H. G. E. & Lathrop, D. P. 1998 Power-law singularities in gravity-capillary waves. Physica D 123, 183205.
Honey, E. M. & Kavehpour, H. P. 2006 Astonishing life of a coalescing drop on a free surface. Phys. Rev. E 167, 027301(1)027301(4).
Jayaratne, O. W. & Mason, B. J. 1964 The coalescence and bouncing of water drops at an air/water interface. Proc. R. Soc. Lond. 280, 545565.
Liow, J. L. 2001 Splash formation by spherical drops. J. Fluid Mech. 427, 73105.
Marucci, G. 1969 A theory of coalescence. Chem. Engng Sci. 24, 975985.
Menchaca-Rocha, A., Martinez-Davalos, A., Nunez, R., Popinet, S. & Zaleski, S. 2001 Coalescence of liquid drops by surface tension. Phys. Rev. E 63, 046309(1)046309(5).
Mohamed-Kassim, Z. & Longmire, E. K. 2003 Drop impact on a liquid/liquid interface. Phys. Fluids 15, 32633273.
Mohamed-Kassim, Z. & Longmire, E. K. 2004 Drop coalescence through a liquid/liquid interface. Phys. Fluids 16, 21702181.
Morton, D., Rudman, M. & Liow, J. L. 2000 An investigation of the flow regimes resulting from splashing drops. Phys. Fluids 12, 747763.
Osher, S. & Sethian, J. A. 1988 Fronts propagating with curvature-dependent speed: Algorithm based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 1249.
Pikhitsa, P. & Tsargorodskaya, A. 2000 Possible mechanism for the multistage coalescence of a floating droplet on the air/liquid interface. Colloids Surf. A 167, 287291.
Popinet, S. & Zaleski, S. 1999 A front tracking algorithm for the accurate representation of surface tension. Intl J. Numer. Methods Fluids 30, 775793.
Puckett, E. G., Almgren, A. S., Bell, J. B., Marcus, D. L. & Rider, W. J. 1997 High-order projection method for tracking fluid interface in variable density incompressible flows boundaries. J. Comput. Phys. 130, 269282.
Raes, F., Dingenena, R. V., Vignatia, E., Wilsona, J., Putauda, J. P., Seinfeldb, J. H. & Adams, P. 2000 Formation and cycling of aerosols in the global troposphere. Atmos. Environ. 34, 42154240.
Rein, M. 1996 The transitional regime between coalescing and splashing drops. J. Fluid Mech. 306, 145165.
Rudman, M. 1997 Volume-tracking methods for interfacial flow calculations. Intl J. Numer. Methods Fluids 24, 671691.
Sarpkaya, T. 1996 Vorticity, free surface, and surfactants. Annu. Rev. Fluid Mech. 28, 83128.
Schotland, R. M. 1960 Experimental results relating to the coalescence of water drops with water surfaces. Discuss. Faraday Soc. 30, 7277.
Sethian, J. A. 1999 Level Set Methods and Fast Marching Methods. Cambridge University Press.
Sussman, M. & Puckett, E. G. 2000 A coupled level-set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162, 301337.
Thompson, J. J. & Newall, H. F. 1885 On the formation of vortex rings by drops falling into liquids and some allied phenomena. Proc. R. Soc. Lond. 39, 417436.
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.
Thoroddsen, S. T. & Takehara, K. 2000 The coalescence cascade of a drop. Phys. Fluids 12, 12651267.
Thoroddsen, S. T., Takehara, K. & Etoh, T. G. 2005 The coalescence speed of a pendent and a sessile drop. J. Fluid Mech. 527, 85114.
Tomar, G., Biswas, G., Sharma, A. & Agarwal, A. 2005 Numerical simulation of bubble growth in film boiling using CLSVOF method. Phys. Fluids 17 (1), 112103(1)112103(13).
Vander Vorst, H. A. 1992 Bi-cgstab: a fast and smoothly converging variant of Bi-CG for solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 12, 631644.
Vandewalle, N., Terwagne, D., Mulleners, K., Gilet, T. & Dorbolo, S. 2006 Dancing droplets onto liquid surfaces. Phys. Fluids 18, 091106.
Welch, S. W. J. & Rachidi, T. 2002 Numerical computation of film boiling including conjugate heat transfer. Numer. Heat Transfer B 42, 3553.
Welch, S. W. J. & Wilson, J. 2000 A volume of fluid bases method for fluid flows with phase change. J. Comput. Phys. 160, 662682.
Youngs, D. L. 1982 Time-dependent multi-material flow with large fluid distortion. In Numerical Methods for Fluid Dynamics (ed. Morton, K. W. & Baines, M. J.), pp. 273285. Academic Press.
Yue, P., Zhou, C. & Feng, J. J. 2006 A computational study of the coalescence between a drop and an interface in newtonian and viscoelastic fluids. Phys. Fluids 18, 102102(1)102102(14).
Zhang, F. H., Li, E. Q. & Thoroddsen, S. T. 2009 Satellite formation during coalescence of unequal size drops. Phys. Rev. L 102, 104502(1)104502(4).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed