No CrossRef data available.
Published online by Cambridge University Press: 21 November 2025

Aerothermal issues in hypersonic transitional swept shock wave/boundary-layer interactions (SBLIs) are critical for the structural safety of high-speed vehicles but remain poorly understood. In this work, previously scarce, high-resolution heat transfer distributions of the hypersonic transitional swept SBLIs, are obtained from fast-responding temperature-sensitive paint (fast TSP) measurements. A series of
$34^\circ$ compression ramps with sweep angles ranging from
$0^\circ$ to
$45^\circ$ are tested in a Mach 12.1 shock tunnel, with a unit Reynolds number of 3.0
$\times$ 10
$^{6}$ m
$^{-1}$. The fast TSP provides a global view of the three-dimensional aerothermal effects on the ramps, allowing in-depth analysis on the sweep effects and the symmetry of heat transfer. The time-averaged results reveal that the heat flux peak near reattachment shifts upstream with decreasing amplitude as the sweep angle increases, and a second peak emerges in the
$45^\circ$ swept ramp due to a type V shock–shock interaction. Downstream of reattachment, the heat flux streaks induced by Görtler-like vortices weaken with increasing sweep angle, whereas their dominant projected wavelengths show little dependence on sweep angle or spanwise location. Away from the ramp’s leading side, the transition onset of the reattached boundary layer gradually approaches the reattachment point. Finally, a general quasi-conical aerothermal symmetry is identified upstream of reattachment, although spanwise variations in transition onset, shock–shock interaction and heat flux streaks are found to disrupt this symmetry downstream of reattachment with varying degrees.