Hostname: page-component-857557d7f7-nk9cn Total loading time: 0 Render date: 2025-11-21T02:41:31.317Z Has data issue: false hasContentIssue false

Global aerothermal effects and their symmetry in hypersonic transitional swept shock wave/boundary-layer interactions

Published online by Cambridge University Press:  21 November 2025

Xu Liu
Affiliation:
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Yu Zhuang
Affiliation:
Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, PR China National Key Laboratory of Aerospace Physics in Fluids, Mianyang 621000, PR China
Gang Wang
Affiliation:
Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, PR China National Key Laboratory of Aerospace Physics in Fluids, Mianyang 621000, PR China
Chuangxin He
Affiliation:
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Yingzheng Liu
Affiliation:
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Di Peng*
Affiliation:
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
*
Corresponding author: Di Peng, idgnep8651@sjtu.edu.cn

Abstract

Aerothermal issues in hypersonic transitional swept shock wave/boundary-layer interactions (SBLIs) are critical for the structural safety of high-speed vehicles but remain poorly understood. In this work, previously scarce, high-resolution heat transfer distributions of the hypersonic transitional swept SBLIs, are obtained from fast-responding temperature-sensitive paint (fast TSP) measurements. A series of $34^\circ$ compression ramps with sweep angles ranging from $0^\circ$ to $45^\circ$ are tested in a Mach 12.1 shock tunnel, with a unit Reynolds number of 3.0 $\times$ 10$^{6}$ m$^{-1}$. The fast TSP provides a global view of the three-dimensional aerothermal effects on the ramps, allowing in-depth analysis on the sweep effects and the symmetry of heat transfer. The time-averaged results reveal that the heat flux peak near reattachment shifts upstream with decreasing amplitude as the sweep angle increases, and a second peak emerges in the $45^\circ$ swept ramp due to a type V shock–shock interaction. Downstream of reattachment, the heat flux streaks induced by Görtler-like vortices weaken with increasing sweep angle, whereas their dominant projected wavelengths show little dependence on sweep angle or spanwise location. Away from the ramp’s leading side, the transition onset of the reattached boundary layer gradually approaches the reattachment point. Finally, a general quasi-conical aerothermal symmetry is identified upstream of reattachment, although spanwise variations in transition onset, shock–shock interaction and heat flux streaks are found to disrupt this symmetry downstream of reattachment with varying degrees.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adler, M.C. & Gaitonde, D.V. 2019 Flow similarity in strong swept-shock/turbulent-boundary-layer interactions. AIAA J. 57 (4), 15791593.10.2514/1.J057534CrossRefGoogle Scholar
Babinsky, H. & Harvey, J.K. 2011 Shock Wave-Boundary-Layer Interactions. Cambridge University Press.10.1017/CBO9780511842757CrossRefGoogle Scholar
Back, L.H. & Cuffel, R.F. 1970 Changes in heat transfer from turbulent boundary layers interacting with shock waves and expansion waves. AIAA J. 8 (10), 18711873.10.2514/3.6004CrossRefGoogle Scholar
Benay, R., Chanetz, B., Mangin, B., Vandomme, L. & Perraud, J. 2006 Shock wave/transitional boundary-layer interactions in hypersonic flow. AIAA J. 44 (6), 12431254.10.2514/1.10512CrossRefGoogle Scholar
Benitez, E.K. et al. 2025 Separation and transition on a cone-cylinder-flare: experimental campaigns. AIAA J. 63 (6), 21622181.10.2514/1.J064198CrossRefGoogle Scholar
Cao, S., Klioutchnikov, I. & Olivier, H. 2019 Görtler vortices in hypersonic flow on compression ramps. AIAA J. 57 (9), 38743884.10.2514/1.J057975CrossRefGoogle Scholar
Ceci, A., Palumbo, A., Larsson, J. & Pirozzoli, S. 2024 Low-frequency unsteadiness in hypersonic swept shock wave-boundary layer interactions. Phys. Rev. Fluids 9 (5), 054603.10.1103/PhysRevFluids.9.054603CrossRefGoogle Scholar
de la Chevalerie, D.A., Fonteneau, A., De Luca, L. & Cardone, G. 1997 Görtler-type vortices in hypersonic flows: the ramp problem. Exp. Therm. Fluid Sci. 15 (2), 6981.10.1016/S0894-1777(97)00051-4CrossRefGoogle Scholar
Chuvakhov, P.V., Borovoy, V.Y., Egorov, I.V., Radchenko, V.N., Olivier, H. & Roghelia, A. 2017 Effect of small bluntness on formation of Görtler vortices in a supersonic compression corner flow. J. Appl. Mech. Tech. Phys. 58, 975989.10.1134/S0021894417060037CrossRefGoogle Scholar
Davami, J. et al. 2024 Separation and transition on the ROTEX-T cone-flare. AIAA Paper 2024-0499.10.2514/6.2024-0499CrossRefGoogle Scholar
Domel, N.D. 2016 General three-dimensional relation for oblique shocks on swept ramps. AIAA J. 54 (1), 310319.10.2514/1.J054230CrossRefGoogle Scholar
Dwivedi, A., Sidharth, G.S., Nichols, J.W., Candler, G.V. & Jovanović, M.R. 2019 Reattachment streaks in hypersonic compression ramp flow: an input–output analysis. J. Fluid Mech. 880, 113135.10.1017/jfm.2019.702CrossRefGoogle Scholar
Edney, B. 1968 Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock. Tech. Rep, Flygtekniska Forsoksanstalten.10.2172/4480948CrossRefGoogle Scholar
Erengil, M.E. & Dolling, D.S. 1993 Effects of sweepback on unsteady separation in Mach 5 compression ramp interactions. AIAA J. 31 (2), 302311.10.2514/3.60176CrossRefGoogle Scholar
Gai, S.L. & Khraibut, A. 2019 Hypersonic compression corner flow with large separated regions. J. Fluid Mech. 877, 471494.10.1017/jfm.2019.599CrossRefGoogle Scholar
Gaitonde, D.V. & Adler, M.C. 2023 Dynamics of three-dimensional shock-wave/boundary-layer interactions. Annu. Rev. Fluid Mech. 55 (1), 291321.10.1146/annurev-fluid-120720-022542CrossRefGoogle Scholar
Ginoux, J.J. 1971 Streamwise vortices in reattaching high-speed flows-a suggested approach. AIAA J. 9 (4), 759760.10.2514/3.6271CrossRefGoogle Scholar
Gonzales, J., Suzuki, K. & Sakaue, H. 2020 Temporally and spatially resolved pressure and temperature maps in hypersonic flow. Intl J. Heat Mass Transfer. 156, 119782.10.1016/j.ijheatmasstransfer.2020.119782CrossRefGoogle Scholar
Hao, J., Cao, S., Guo, P. & Wen, C.-Y. 2023 Response of hypersonic compression corner flow to upstream disturbances. J. Fluid Mech. 964, A25.10.1017/jfm.2023.384CrossRefGoogle Scholar
Hao, J., Cao, S., Wen, C.-Y. & Olivier, H. 2021 Occurrence of global instability in hypersonic compression corner flow. J. Fluid Mech. 919, A4.10.1017/jfm.2021.372CrossRefGoogle Scholar
Hao, J., Wang, J. & Lee, C. 2016 Numerical study of hypersonic flows over reentry configurations with different chemical nonequilibrium models. Acta Astronaut. 126, 110.10.1016/j.actaastro.2016.04.014CrossRefGoogle Scholar
Hao, J. & Wen, C.-Y. 2020 Hypersonic flow over spherically blunted double cones. J. Fluid Mech. 896, A26.10.1017/jfm.2020.331CrossRefGoogle Scholar
Hung, F. & Barnett, D. 1973 Shockwave-boundary layer interference heating analysis. AIAA Paper 1973-237.10.2514/6.1973-237CrossRefGoogle Scholar
Ishiguro, Y., Nagai, H., Asai, K. & Nakakita, K. 2007 Visualization of hypersonic compression corner flows using temperature-and pressure-sensitive paints. AIAA Paper 2007-118.10.2514/6.2007-118CrossRefGoogle Scholar
Kim, K.-S. & Settles, G.A.R.Y. 1988 Skin friction measurements by laser interferometry in swept shock wave/turbulent boundary-layer interactions. AIAA Paper 1988-497.10.2514/6.1988-497CrossRefGoogle Scholar
Knight, D.D., Horstman, C.C. & Bogdonoff, S. 1992 Structure of supersonic turbulent flow past a swept compression corner. AIAA J. 30 (4), 890896.10.2514/3.11006CrossRefGoogle Scholar
Lalande, M., Atkins, C.W.C. & Deiterding, R. 2022 Investigation of shock patterns around a double-wedge for hypersonic flows in thermochemical non-equilibrium. In 2nd International Conference on High-Speed Vehicle Science and Technology, pp. 119.Google Scholar
Laurence, S.J., Ozawa, H., Martinez Schramm, J., Butler, C.S. & Hannemann, K. 2019 Heat-flux measurements on a hypersonic inlet ramp using fast-response temperature-sensitive paint. Exp. Fluids 60, 116.10.1007/s00348-019-2711-8CrossRefGoogle Scholar
Leger, T., Bisek, N. & Poggie, J. 2016 Computations of turbulent flow over a sharp fin at Mach 5. J. Thermophys. Heat Transer. 30 (2), 394402.10.2514/1.T4698CrossRefGoogle Scholar
Leidy, A.N., Neel, I.T., Tichenor, N.R., Bowersox, R.D.W. & Schmisseur, J.D. 2021 Tunnel noise effects on hypersonic cylinder-induced transitional shock-wave/boundary-layer interactions. AIAA J. 59 (7), 23572367.10.2514/1.J059768CrossRefGoogle Scholar
Li, J., Zhu, Y. & Luo, X. 2014 On Type VI–V transition in hypersonic double-wedge flows with thermo-chemical non-equilibrium effects. Phys. Fluids 26 (8), 086104.10.1063/1.4892819CrossRefGoogle Scholar
Liu, S., Wang, M., Dong, H., Xia, T., Chen, L. & Zhao, A. 2021 Infrared thermography of hypersonic boundary layer transition induced by isolated roughness elements. Mod. Phys. Lett. B. 35 (36), 2150500.10.1142/S021798492150500XCrossRefGoogle Scholar
Liu, X., Zhuang, Y., Zhang, Y., Wang, G., Liu, Y. & Peng, D. 2024 Time-resolved heat flux determination from fast-responding temperature-sensitive paint measurement in a shock tunnel using transient in-situ calibration. Meas. Sci. Technol. 35 (3), 035016.10.1088/1361-6501/ad13e6CrossRefGoogle Scholar
Lugrin, M., Beneddine, S., Leclercq, C., Garnier, E. & Bur, R. 2021 Transition scenario in hypersonic axisymmetrical compression ramp flow. J. Fluid Mech. 907, A6.10.1017/jfm.2020.833CrossRefGoogle Scholar
Lugrin, M., Nicolas, F., Severac, N., Tobeli, J.-P., Beneddine, S., Garnier, E., Esquieu, S. & Bur, R. 2022 Transitional shockwave/boundary layer interaction experiments in the R2Ch blowdown wind tunnel. Exp. Fluids 63 (2), 46.10.1007/s00348-022-03395-9CrossRefGoogle Scholar
MacCormack, R.W. 2014 Numerical Computation of Compressible and Viscous Flow. American Institute of Aeronautics and Astronautics, Inc.10.2514/4.102646CrossRefGoogle Scholar
Ozawa, H., Laurence, S.J., Schramm, J.M., Wagner, A. & Hannemann, K. 2015 Fast-response temperature-sensitive-paint measurements on a hypersonic transition cone. Exp. Fluids 56 (1), 1853.10.1007/s00348-014-1853-yCrossRefGoogle Scholar
Risius, S., Beck, W.H., Klein, C., Henne, U. & Wagner, A. 2017 Determination of heat transfer into a wedge model in a hypersonic flow using temperature-sensitive paint. Exp. Fluids 58, 113.10.1007/s00348-017-2393-zCrossRefGoogle Scholar
Rodi, P.E. & Dolling, D.S. 1995 Behavior of pressure and heat transfer in sharp fin-induced turbulent interactions. AIAA J. 33 (11), 20132019.10.2514/3.12852CrossRefGoogle Scholar
Roghelia, A., Olivier, H., Egorov, I. & Chuvakhov, P. 2017 Experimental investigation of Görtler vortices in hypersonic ramp flows. Exp. Fluids 58 (10), 139.10.1007/s00348-017-2422-yCrossRefGoogle Scholar
Sabnis, K. & Babinsky, H. 2023 A review of three-dimensional shock wave–boundary-layer interactions. Prog. Aerosp. Sci. 143, 100953.10.1016/j.paerosci.2023.100953CrossRefGoogle Scholar
Sadagopan, A., Huang, D., Jirasek, A., Seidel, J., Pandey, A. & Casper, K.M. 2023 Hypersonic fluid–thermal–structural interaction of cone–slice–ramp: computations with experimental validation. AIAA J. 61 (11), 47524771.10.2514/1.J062326CrossRefGoogle Scholar
Sandham, N.D., Schülein, E., Wagner, A., Willems, S. & Steelant, J. 2014 Transitional shock-wave/boundary-layer interactions in hypersonic flow. J. Fluid Mech. 752, 349382.10.1017/jfm.2014.333CrossRefGoogle Scholar
Schramm, J.M. & Hilfer, M. 2018 Time response calibration of ultra-fast temperature sensitive paints for the application in high temperature hypersonic flows. In Symposium der Deutsche Gesellschaft für Luft-und Raumfahrt, pp. 143152. Springer.10.1007/978-3-030-25253-3_14CrossRefGoogle Scholar
Settles, G. & Dolling, D. 1990 Swept shock/boundary-layer interactions-tutorial and update. AIAA Paper 1990-375.10.2514/6.1990-375CrossRefGoogle Scholar
Settles, G.S. & Kimmel, R.L. 1986 Similarity of quasiconical shock wave/turbulent boundary-layer interactions. AIAA J. 24 (1), 4753.10.2514/3.9221CrossRefGoogle Scholar
Settles, G.S. & Teng, H.-Y. 1984 Cylindrical and conical flow regimes of three-dimensional shock/boundary-layer interactions. AIAA J. 22 (2), 194200.10.2514/3.8367CrossRefGoogle Scholar
GS, S., Dwivedi, A., Candler, G.V. & Nichols, J.W. 2018 Onset of three-dimensionality in supersonic flow over a slender double wedge. Phys. Rev. Fluids 3 (9), 093901.10.1103/PhysRevFluids.3.093901CrossRefGoogle Scholar
Simeonides, G. & Haase, W. 1995 Experimental and computational investigations of hypersonic flow about compression ramps. J. Fluid Mech. 283, 1742.10.1017/S0022112095002229CrossRefGoogle Scholar
Smith, C.D., Siddiqui, F., Ledbetter, S., Gragston, M., Shine, J.S., Ibanez, O., McGruder, D. & Bowersox, R.D. 2024 Measurements of surface heating from hypersonic boundary layer transition by simultaneous temperature-sensitive paint and infrared thermography. AIAA Paper 2024-0667.10.2514/6.2024-0667CrossRefGoogle Scholar
Tang, Z., Xu, H., Li, X. & Ren, J. 2024 Aerodynamic heating in hypersonic shock wave and turbulent boundary layer interaction. J. Fluid Mech. 999, A66.10.1017/jfm.2024.641CrossRefGoogle Scholar
Threadgill, J.A., Little, J.C. & Wernz, S.H. 2019 Transitional shock wave boundary layer interactions on a compression ramp at Mach 4. AIAA Paper 2019-0343.10.2514/6.2019-0343CrossRefGoogle Scholar
Threadgill, J.A.S., Little, J.C. & Wernz, S.H. 2021 Transitional shock boundary layer interactions on a compression ramp at Mach 4. AIAA J. 59 (12), 48244841.10.2514/1.J059981CrossRefGoogle Scholar
Tirtey, S.C., Chazot, O. & Walpot, L. 2011 Characterization of hypersonic roughness-induced boundary-layer transition. Exp. Fluids 50, 407418.10.1007/s00348-010-0939-4CrossRefGoogle Scholar
Vanstone, L., Musta, M.N., Seckin, S. & Clemens, N. 2018 Experimental study of the mean structure and quasi-conical scaling of a swept-compression-ramp interaction at Mach 2. J. Fluid Mech. 841, 127.10.1017/jfm.2018.8CrossRefGoogle Scholar
Wright, M.J., Candler, G.V. & Bose, D. 1998 Data-parallel line relaxation method for the Navier–Stokes equations. AIAA J. 36 (9), 16031609.10.2514/2.586CrossRefGoogle Scholar
Zhang, J., Guo, T., Dang, G. & Li, X. 2022 Direct numerical simulation of shock wave/turbulent boundary layer interaction in a swept compression ramp at Mach 6. Phys. Fluids 34 (11), 116110.10.1063/5.0118578CrossRefGoogle Scholar
Zuo, F.-Y. 2023 Hypersonic shock wave/turbulent boundary layer interaction over a compression ramp. AIAA J. 61 (4), 15791595.10.2514/1.J062521CrossRefGoogle Scholar
Zuo, F.-Y. & Pirozzoli, S. 2024 Recent progress in conical shock wave/boundary layer interaction with spanwise pressure gradient. Propul. Power Res. 13 (3), 295318.10.1016/j.jppr.2024.08.003CrossRefGoogle Scholar
Supplementary material: File

Liu et al. supplementary movie 1

Time-resolved heat flux fields-unswept ramp.
Download Liu et al. supplementary movie 1(File)
File 2.4 MB
Supplementary material: File

Liu et al. supplementary movie 2

Time-resolved heat flux fields-15° swept ramp.
Download Liu et al. supplementary movie 2(File)
File 2.6 MB
Supplementary material: File

Liu et al. supplementary movie 3

Time-resolved heat flux fields-30° swept ramp.
Download Liu et al. supplementary movie 3(File)
File 2.7 MB
Supplementary material: File

Liu et al. supplementary movie 4

Time-resolved heat flux fields-45° swept ramp.
Download Liu et al. supplementary movie 4(File)
File 2.8 MB