Skip to main content Accessibility help

The granular Blasius problem

  • Jonathan Michael Foonlan Tsang (a1), Stuart B. Dalziel (a1) and N. M. Vriend (a1)


We consider the steady flow of a granular current over a uniformly sloped surface that is smooth upstream (allowing slip for $x<0$ ) but rough downstream (imposing a no-slip condition on $x>0$ ), with a sharp transition at $x=0$ . This problem is similar to the classical Blasius problem, which considers the growth of a boundary layer over a flat plate in a Newtonian fluid that is subject to a similar step change in boundary conditions. Our discrete particle model simulations show that a comparable boundary-layer phenomenon occurs for the granular problem: the effects of basal roughness are initially localised at the base but gradually spread throughout the depth of the current. A rheological model can be used to investigate the changing internal velocity profile. The boundary layer is a region of high shear rate and therefore high inertial number $I$ ; its dynamics is governed by the asymptotic behaviour of the granular rheology for high values of the inertial number. The $\unicode[STIX]{x1D707}(I)$ rheology (Jop et al., Nature, vol. 441 (7094), 2006, pp. 727–730) asserts that $\text{d}\unicode[STIX]{x1D707}/\text{d}I=O(1/I^{2})$ as $I\rightarrow \infty$ , but current experimental evidence is insufficient to confirm this. We show that this rheology does not admit a self-similar boundary layer, but that there exist generalisations of the $\unicode[STIX]{x1D707}(I)$ rheology, with different dependencies of $\unicode[STIX]{x1D707}(I)$ on $I$ , for which such self-similar solutions do exist. These solutions show good quantitative agreement with the results of our discrete particle model simulations.


Corresponding author

Email address for correspondence:


Hide All
Acheson, D. J. 1990 Elementary Fluid Dynamics. Oxford University Press.
Andreotti, B., Forterre, Y. & Pouliquen, O. 2015 Granular Media. Cambridge University Press.
Artoni, R., Santomaso, A. & Canu, P. 2009 Effective boundary conditions for dense granular flows. Phys. Rev. E 79, 031304.
Baker, J. L., Johnson, C. G. & Gray, J. M. N. T. 2016 Segregation-induced finger formation in granular free-surface flows. J. Fluid Mech. 809, 168212.
Barker, T., Schaeffer, D. G., Shearer, M. & Gray, J. M. N. T. 2017 Well-posed continuum equations for granular flow with compressibility and 𝜇(I)-rheology. Proc. R. Soc. A 473 (2201), 20160846.
Bharathraj, S. & Kumaran, V. 2017 Effect of base topography on dynamics and transition in a dense granular flow. J. Fluid Mech. 832, 600640.
Billingham, J. & King, A. C. 2001 Wave Motion. Cambridge University Press.
Bouzid, M., Trulsson, M., Claudin, P., Clément, E. & Andreotti, B. 2013 Nonlocal rheology of granular flows across yield conditions. Phys. Rev. Lett. 111 (23), 238301.
Chow, V. T. 1959 Open-Channel Hydraulics. Blackburn Press.
da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72 (2), 021309.
Denissen, I. F. C., Weinhart, T., Voortwis, A. T., Luding, S., Gray, J. M. N. T. & Thornton, A. R. 2019 Bulbous head formation in bidispersed shallow granular flow over an inclined plane. J. Fluid Mech. 866, 263297.
Evans, L. 2010 Partial Differential Equations. American Mathematical Society.
Fichman, M. & Hetsroni, G. 2005 Viscosity and slip velocity in gas flow in microchannels. Phys. Fluids 17 (12), 123102.
GDR MiDi 2004 On dense granular flows. Eur. Phys. J. E 14 (4), 341365.
Gray, J. M. N. T. & Edwards, A. N. 2014 A depth-averaged 𝜇(I)-rheology for shallow granular free-surface flows. J. Fluid Mech. 755, 503534.
Gray, J. M. N. T., Wieland, M. & Hutter, K. 1999 Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. Lond. A 455 (1985), 18411874.
Hákonardóttir, K. M.2004 The interaction between snow avalanches and dams. PhD thesis, University of Bristol.
Henann, D. L. & Kamrin, K. 2013 A predictive, size-dependent continuum model for dense granular flows. Proc. Natl Acad. Sci. USA 110 (17), 67306735.
Hinch, E. J. 1991 Perturbation Methods. Cambridge University Press.
Hinze, J. O. 1975 Turbulence (McGraw-Hill Series in Mechanical Engineering). McGraw-Hill College.
Hogg, A. J. & Jóhannesson, T. 2016 Avalanche defence schemes. In UK Success Stories in Industrial Mathematics, pp. 5358. Springer International Publishing.
Holyoake, A. J.2011 Rapid granular flows in an inclined chute. PhD thesis, University of Cambridge.
Holyoake, A. J. & McElwaine, J. N. 2012 High-speed granular chute flows. J. Fluid Mech. 710, 3571.
Hui, K., Haff, P. K., Ungar, J. E. & Jackson, R. 1984 Boundary conditions for high-shear grain flows. J. Fluid Mech. 145, 223233.
Jing, L., Kwok, C. Y., Leung, Y. F. & Sobral, Y. D. 2016 Characterization of base roughness for granular chute flows. Phys. Rev. E 94 (5), 052901.
Jop, P., Forterre, Y. & Pouliquen, O. 2005 Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167192.
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727730.
Kamrin, K. & Henann, D. L. 2015 Nonlocal modeling of granular flows down inclines. Soft Matt. 11 (1), 179185.
Longo, S. & Valiani, A. 2014 Analysis of a boundary layer of a granular mixture flowing past a plate at zero incidence. Eur. J. Mech. (B/Fluids) 46, 5973.
Lueptow, R. M., Akonur, A. & Shinbrot, T. 2000 PIV for granular flows. Exp. Fluids 28 (2), 183186.
Maxwell, J. C. 1879 On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. R. Soc. Lond. A 170, 231256.
Morris, D. L., Hannon, L. & Garcia, A. L. 1992 Slip length in a dilute gas. Phys. Rev. A 46, 52795281.
O’Sullivan, C. 2014 Particulate Discrete Element Modelling: A Geomechanics Perspective. CRC Press.
Peregrine, D. H. 1967 Long waves on a beach. J. Fluid Mech. 27, 815827.
Petley, D. 2012 Global patterns of loss of life from landslides. Geology 40 (10), 927930.
Pouliquen, O., Delour, J. & Savage, S. B. 1997 Fingering in granular flows. Nature 386 (6627), 816817.
Pouliquen, O. & Forterre, Y. 2002 Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133151.
Prandtl, L. 1905 Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Proceedings of the Third International Mathematic Congress, Heidelberg, 1904 (ed. Krazer, A.), pp. 484491.
Rajchenbach, J. 2005 Rheology of dense granular materials: steady, uniform flow and the avalanche regime. J. Phys.: Condens. Matter 17 (24), S2731S2742.
Ruschak, K. J. & Weinstein, S. J. 2003 Laminar, gravitationally driven flow of a thin film on a curved wall. Trans. ASME J. Fluids Engng 125 (1), 1017.
Saingier, G., Deboeuf, S. & Lagrée, P.-Y. 2016 On the front shape of an inertial granular flow down a rough incline. Phys. Fluids 28 (5), 053302.
Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177215.
Savage, S. B. & Hutter, K. 1991 The dynamics of avalanches of granular materials from initiation to runout. Part I. Analysis. Acta Mechanica 86 (1–4), 201223.
Schlichting, H. & Gersten, K. 2017 Boundary-Layer Theory, 8th edn. Springer.
Thornton, A. R., Krijgsman, D., te Voortwis, A., Ogarko, V., Luding, S., Fransen, R., Gonzalez, S., Bokhove, O., Imole, O. & Weinhart, T. 2013 A review of recent work on the discrete particle method at the University of Twente: an introduction to the open-source package MercuryDPM. In DEM6 – International Conference on DEMs. Colorado School of Mines.
Thornton, A. R., Weinhart, T., Luding, S. & Bokhove, O. 2012 Modeling of particle size segregation: calibration using the discrete particle method. Intl J. Mod. Phys. C 23 (08), 1240014.
Tsang, J. M. F., Dalziel, S. B. & Vriend, N. M. 2018 Interaction between the Blasius boundary layer and a free surface. J. Fluid Mech. 839, R1.
Weinhart, T., Hartkamp, R., Thornton, A. R. & Luding, S. 2013 Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys. Fluids 25 (7), 070605.
Weinhart, T., Thornton, A. R., Luding, S. & Bokhove, O. 2012 From discrete particles to continuum fields near a boundary. Granul. Matt. 14 (2), 289294.
Weinhart, T., Tunuguntla, D. R., Lantman, M. P., van Schrojenstein, D., Windows-Yule, I. F. C., Polman, C. R., Tsang, H., Jin, J. M. F., Orefice, B., van der Vaart, L. et al. 2017 MercuryDPM: fast, flexible particle simulations in complex geometries. Part B. Applications. In V International Conference on Particle-based Methods – Fundamentals and Applications, Particles 2017. International Center for Numerical Methods in Engineering.
Woodhouse, M. J., Phillips, J. C. & Hogg, A. J. 2016 Unsteady turbulent buoyant plumes. J. Fluid Mech. 794, 595638.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed