Skip to main content Accessibility help
×
Home

Granular jet impact: probing the ideal fluid description

  • Patric Müller (a1), Arno Formella (a2) and Thorsten Pöschel (a1)

Abstract

We investigate the impact of a granular jet on a finite target by means of particle simulations. The resulting hydrodynamic fields are compared with theoretical predictions for the corresponding flow of an incompressible and rotation-free fluid. The degree of coincidence between the field obtained from the discrete granular system and the idealized continuous fluid flow depends on the characteristics of the granular system, such as granularity, packing fraction, inelasticity of collisions, friction and target size. In certain limits we observe a granular–continuum transition under which the geometric and dynamic properties of the particle jet and the fluid jet become almost identical.

Copyright

Corresponding author

Email address for correspondence: patric.mueller@cbi.uni-erlangen.de

References

Hide All
Bannerman, M. N., Sargant, R. & Lue, L. 2011 DynamO: a free O(N) general event-driven simulator. J. Comput. Chem. 32, 33293338.
Bernu, B. & Mazighi, R. 1990 One-dimensional bounce of inelastically colliding marbles on a wall. J. Phys. A 23, 57455754.
Brito, R. & Ernst, M. 1998 Extension of Haff’s cooling law in granular flows. Europhys. Lett. 43, 497502.
Cheng, X., Varas, G., Citron, D., Jaeger, H. M. & Nagel, S. R. 2007 Collective behavior in a granular jet: emergence of a liquid with zero surface tension. Phys. Rev. Lett. 99, 188001.
Clanet, C. 2001 Dynamics and stability of water bells. J. Fluid Mech. 430, 111147.
Ellowitz, J., Guttenberg, N. & Zhang, W. W.2012 Perfect fluid flow from granular jet impact. arXiv:1201.5562v1 [physics.flu-dyn].
Ellowitz, J., Turlier, H., Gutenberg, N., Zhang, W. W. & Nagel, S. R. 2013 Still water: dead zones and collimated ejecta from the impact of granular jets. Phys. Rev. Lett. 111, 168001.
Goldenberg, C. & Goldhirsch, I. 2006 Continuum mechanics for small systems and fine resolutions. In Handbook of Theoretical and Computational Nanotechnology (ed. Rieth, M. & Schommers, W.), vol. 4, pp. 329386. American Scientific.
Goldhirsch, I. 1999 Scales and kinetics of granular flows. Chaos 9, 659672.
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267293.
Goldhirsch, I. 2010 Stress, stress asymmetry and couple stress: from discrete particles to contiuous fields. Granul. Matt. 12, 239252.
Gommeren, H. J. C., Heitzmann, D. A., Moolenaar, J. A. C. & Scarlett, B. 2000 Modelling and control of a jet mill plant. Powder Technol. 108, 147154.
Gurevich, M. I. 1965 Theory of Jets in Ideal Fluids. Academic Press.
Guttenberg, N. 2012 Microscopic dissipation in a cohesionless granular jet impact. Phys. Rev. E 85, 051303.
Huang, Y. J., Chan, C. K. & Zamankhan, P. 2010 Granular jet impingement on a fixed target. Phys. Rev. E 82, 031307.
Kapfer, S. C., Mickel, W., Mecke, K. & Schröder-Turk, G. E. 2012 Jammed spheres: Minkowski tensors reveal onset of local crystallinity. Phys. Rev. E 85, 030301.
Kuppinger, G. 1990 Strahlen von Oberflächen. Metall 44, 4352.
Lubachevsky, B. D. 1991 How to simulate billiards and similar systems. J. Comput. Phys. 94, 255283.
Lubachevsky, B. D. & Stillinger, F. H. 1990 Geometric properties of random disk packings. J. Stat. Phys. 60, 561583.
Luding, S. & McNamara, S. 1998 How to handle the inelastic collapse of a dissipative hard-sphere gas with the TC model. Granul. Matt. 1, 113128.
McNamara, S. & Young, W. R. 1991 Inelastic collapse and clumping in a one-dimensional granular medium. Phys. Fluids 4, 496504.
Müller, P., Krengel, D. & Pöschel, T. 2012 Negative coefficient of normal restitution. Phys. Rev. E 85, 041306.
Müller, P. & Pöschel, T. 2012 Oblique impact of frictionless spheres: on the limitations of hard sphere models for granular dynamics. Granul. Matt. 14, 115120.
Pöschel, T. & Schwager, T. 2005 Computational Granular Dynamics – Models and Algorithms. Springer.
Sano, T. G. & Hayakawa, H. 2012 Simulation of granular jets: is granular flow really a perfect fluid? Phys. Rev. Lett. 86, 041308.
Savart, F. 1833 Mémoire sur le choc d’une veine liquid lancée contre un plan circulaire. Ann. Chim. Phys. 54, 5587.
Schwager, T., Becker, V. & Pöschel, T. 2008 Coefficient of tangential restitution for viscoelastic spheres. Eur. Phys. J. E 27, 107114.
Schwager, T. & Pöschel, T. 2008 Coefficient of restitution for viscoelastic spheres: the effect of delayed recovery. Phys. Rev. E 78, 051304.
Serero, D., Goldenberg, C., Noskowicz, S. H. & Goldhirsch, I. 2008 The classical granular temperature and slightly beyond. Powder Technol. 182, 257271.
Tan, M. -L. & Goldhirsch, I. 1998 Rapid granular flows as mesoscopic systems. Phys. Rev. Lett. 81, 30223025.
Uehara, J. S., Ambroso, M. A., Ojha, R. P. & Durian, D. J. 2003 Low-speed impact craters in loose granular media. Phys. Rev. Lett. 90, 194301.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed