Skip to main content
×
Home
    • Aa
    • Aa

Gravito-inertial waves in a differentially rotating spherical shell

  • G. M. Mirouh (a1) (a2), C. Baruteau (a1) (a2), M. Rieutord (a1) (a2) and J. Ballot (a1) (a2)
Abstract

The gravito-inertial waves propagating over a shellular baroclinic flow inside a rotating spherical shell are analysed using the Boussinesq approximation. The wave properties are examined by computing paths of characteristics in the non-dissipative limit, and by solving the full dissipative eigenvalue problem using a high-resolution spectral method. Gravito-inertial waves are found to obey a mixed-type second-order operator and to be often focused around short-period attractors of characteristics or trapped in a wedge formed by turning surfaces and boundaries. We also find eigenmodes that show a weak dependence with respect to viscosity and heat diffusion just like truly regular modes. Some axisymmetric modes are found unstable and likely destabilized by baroclinic instabilities. Similarly, some non-axisymmetric modes that meet a critical layer (or corotation resonance) can turn unstable at sufficiently low diffusivities. In all cases, the instability is driven by the differential rotation. For many modes of the spectrum, neat power laws are found for the dependence of the damping rates with diffusion coefficients, but the theoretical explanation for the exponent values remains elusive in general. The eigenvalue spectrum turns out to be very rich and complex, which lets us suppose an even richer and more complex spectrum for rotating stars or planets that own a differential rotation driven by baroclinicity.

Copyright
Corresponding author
Email address for correspondence: giovanni.mirouh@irap.omp.eu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. H. Carr , M. J. S. Belton , C. R. Chapman , M. E. Davies , P. Geissler , R. Greenberg , A. S. McEwen , B. R. Tufts , R. Greeley , R. Sullivan 1998 Evidence for a subsurface ocean on Europa. Nature 391, 363365.

M.-A. Dupret , A. Thoul , R. Scuflaire , J. Daszyńska-Daszkiewicz , C. Aerts , P.-O. Bourge , C. Waelkens  & A. Noels 2004 Asteroseismology of the 𝛽 Cep star HD 129929. II. Seismic constraints on core overshooting, internal rotation and stellar parameters. Astron. Astrophys. 415, 251257.

F. Espinosa Lara  & M. Rieutord 2013 Self-consistent 2D models of fast rotating early-type stars. Astron. Astrophys. 552, A35.

B. Favier , A. J. Barker , C. Baruteau  & G. I. Ogilvie 2014 Non-linear evolution of tidally forced inertial waves in rotating fluid bodies. Mon. Not. R. Astron. Soc. 439, 845860.

P. Fotheringham  & R. Hollerbach 1998 Inertial oscillations in a spherical shell. Geophys. Astrophys. Fluid Dyn. 89, 2343.

S. Friedlander 1982 Turning surface behaviour for internal waves subject to general gravitational fields. Geophys. Astrophys. Fluid Dyn. 21, 189200.

S. Friedlander 1987 Internal waves in a rotating stratified spherical shell: asymptotic solutions. Geophys. J. R. Astron. Soc. 89, 637655.

S. Friedlander 1989 Hydromagnetic waves in a differentially rotating, stratified spherical shell. Geophys. Astrophys. Fluid Dyn. 48, 5367.

S. Friedlander  & W. Siegmann 1982b Internal waves in a rotating stratified fluid in an arbitrary gravitational field. Geophys. Astrophys. Fluid Dyn. 19, 267291.

J. Fuller 2014 Saturn ring seismology: evidence for stable stratification in the deep interior of Saturn. Icarus 242, 283296.

T. Gastine  & B. Dintrans 2008 Direct numerical simulations of the 𝜅-mechanism. I. Radial modes in the purely radiative case. Astron. Astrophys. 484, 2942.

T. Gerkema , J. T. F. Zimmerman , L. R. M. Maas  & H. van Haren 2008 Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys. 46, 2006RG000220, 2004.

P. Goldreich  & G. Schubert 1967 Differential rotation in stars. Astrophys. J. 150, 571.

J. Goodman  & C. Lackner 2009 Dynamical tides in rotating planets and stars. Astrophys. J. 696, 20542067.

D. Hypolite  & M. Rieutord 2014 Dynamics of the envelope of a rapidly rotating star or giant planet in gravitational contraction. Astron. Astrophys. 572, A15.

A. Maeder 2009 Physics, Formation and Evolution of Rotating Stars. Springer.

P. S. Marcus , S. Pei , C.-H. Jiang , J. A. Barranco , P. Hassanzadeh  & D. Lecoanet 2015 Zombie vortex instability. I. A purely hydrodynamic instability to resurrect the dead zones of protoplanetary disks. Astrophys. J. 808, 87.

P. S. Marcus , S. Pei , C.-H. Jiang  & P. Hassanzadeh 2013 Three-Dimensional Vortices Generated by Self-Replication in Stably Stratified Rotating Shear Flows. Phys. Rev. Lett. 111 (8), 084501.

S. A. Maslowe 1986 Critical layers in shear flows. Ann. Rev. Fluid Mech. 18, 405432.

S. Mathis , C. Neiner  & N. Tran Minh 2014 Impact of rotation on stochastic excitation of gravity and gravito-inertial waves in stars. Astron. Astrophys. 565, A47.

P. Morel 1997 CESAM: a code for stellar evolution calculations. Astron. Astrophys. Suppl. Ser. 124, 597614.

G. Ogilvie 2009 Tidal dissipation in rotating fluid bodies: a simplified model. Mon. Not. R. Astron. Soc. 396, 794806.

G. I. Ogilvie 2014 Tidal dissipation in stars and giant planets. Annu. Rev. Astron. Astrophys. 52, 171210.

B. Paxton , L. Bildsten , A. Dotter , F. Herwig , P. Lesaffre  & F. Timmes 2011 Modules for experiments in stellar astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3.

M. Rieutord 1987 Linear theory of rotating fluids using spherical harmonics. I. Steady flows. Geophys. Astrophys. Fluid Dyn. 39, 163.

M. Rieutord 2006 The dynamics of the radiative envelope of rapidly rotating stars. I. A spherical boussinesq model. Astron. Astrophys. 451, 10251036.

M. Rieutord 2008 The solar dynamo. C. R. Physique 9, 757765.

M. Rieutord  & F. Espinosa Lara 2013 Ab initio modelling of steady rotating stars. In SeIsmology for Studies of Stellar Rotation and Convection (ed. M. Goupil , K. Belkacem , C. Neiner , F. Lignières  & J. J. Green ), Lecture Notes in Physics, vol. 865, pp. 4973. Springer.

M. Rieutord , B. Georgeot  & L. Valdettaro 2000 Waves attractors in rotating fluids: a paradigm for ill-posed cauchy problems. Phys. Rev. Lett. 85, 42774280.

M. Rieutord , S. A. Triana , D. S. Zimmerman  & D. P. Lathrop 2012 Excitation of inertial modes in an experimental spherical Couette flow. Phys. Rev. E 86 (2), 026304.

M. Rieutord  & L. Valdettaro 1997 Inertial waves in a rotating spherical shell. J. Fluid Mech. 341, 7799.

A. Swart , A. Manders , U. Harlander  & L. Maas 2010 Experimental observation of strong mixing due to internal wave focusing over sloping terrain. Dyn. Atmos. Oceans 50 (1), 1634.

L. Valdettaro , M. Rieutord , T. Braconnier  & V. Fraysse 2007 Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and arnoldi-chebyshev algorithm. J. Comput. Appl. Maths 205, 382393.

S. A. Zhevakin 1963 Physical basis of the pulsation theory of variable stars. Annu. Rev. Astron. Astrophys. 1, 367.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 65 *
Loading metrics...

Abstract views

Total abstract views: 143 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th April 2017. This data will be updated every 24 hours.