Hostname: page-component-7f64f4797f-vhqbp Total loading time: 0 Render date: 2025-11-05T09:54:17.000Z Has data issue: false hasContentIssue false

Gravity drives the flow within the Stewartson layer in centrifugal convection

Published online by Cambridge University Press:  05 November 2025

Rushi Lai
Affiliation:
Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University , Beijing 100084, PR China
Jun Zhong
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
Chao Sun*
Affiliation:
Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University , Beijing 100084, PR China New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
*
Corresponding author: Chao Sun, chaosun@tsinghua.edu.cn

Abstract

We conduct three-dimensional numerical simulations on centrifugal convection (CC) in a closed annular container, incorporating gravity and no-slip top and bottom boundaries, to systematically investigate rotation-induced secondary flow. The Stewartson layer, identified by an elongated circulation in mean vertical velocity plots, emerges near the inner and outer cylinders only beyond a critical gravitational forcing. Quantitative analyses confirm that the layer thickness scales as $\delta _{\,\!\textit{st}}\sim {\textit{Ek}}^{1/3}$ due to rotational effects, consistent with results from rotating Rayleigh–Bénard convection, where $Ek$ represents the Ekman number. The internal circulation strength, however, is determined by both gravitational buoyancy and rotational effects. We propose that gravitational buoyancy drives the internal flow, which balances against viscous forces to establish a terminal velocity. Through theoretical analysis, the vertical velocity amplitude follows $W_{\,\!\textit{st}}\sim {\textit{Ek}}^{5/3}\,Ro^{-1}\,{\textit{Ra}}_g\,Pr^{-1}$, showing good agreement with simulation results across a wide parameter range. Here, $Ro^{-1}$ represents the inverse Rossby number, ${\textit{Ra}}_g$ is the gravitational Rayleigh number, and ${\textit{Pr}}$ is the Prandtl number. The theoretical predictions match simulations well, demonstrating that the Stewartson layer is gravity-induced and rotationally constrained through geostrophic balance in the CC system. These findings yield fundamental insights into turbulent flow structures and heat transfer mechanisms in the CC system, offering both theoretical advances and practical engineering applications.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.10.1103/RevModPhys.81.503CrossRefGoogle Scholar
Anas, M. & Joshi, P. 2024 Critical Prandtl number for heat transfer enhancement in rotating convection. Phys. Rev. Lett. 132 (3), 034001.CrossRefGoogle ScholarPubMed
Bairi, A., Zarco-Pernia, E. & Garcia de Maria, J.M. 2014 A review on natural convection in enclosures for engineering applications. The particular case of the parallelogrammic diode cavity. Appl. Therm. Engng 63 (1), 304322.CrossRefGoogle Scholar
Cagney, N., Newsome, W.H., Lithgow-Bertelloni, C., Cotel, A., Hart, S.R. & Whitehead, J.A. 2015 Temperature and velocity measurements of a rising thermal plume. Geochem. Geophys. Geosyst. 16 (3), 579599.CrossRefGoogle Scholar
Chandrasekhar, S. 1953 The instability of a layer of fluid heated below and subject to Coriolis forces. Proc. R. Soc. Lond. A: Math. Phys. Sci. 217 (1130), 306327.Google Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (7), 58.CrossRefGoogle ScholarPubMed
Chong, K., Wagner, S., Kaczorowski, M., Shishkina, O. & Xia, K. 2018 Effect of Prandtl number on heat transport enhancement in Rayleigh–Bénard convection under geometrical confinement. Phys. Rev. Lett. 3 (1), 013501.Google Scholar
Courant, R., Friedrichs, K. & Lewy, H. 1928 Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann. 100 (1), 3274.10.1007/BF01448839CrossRefGoogle Scholar
Davidson, P.A. 2013 Turbulence in Rotating, Stratified and Electrically Conducting Fluids. Cambridge University Press.10.1017/CBO9781139208673CrossRefGoogle Scholar
Ecke, R.E. & Shishkina, O. 2023 Turbulent rotating Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 55, 603638.CrossRefGoogle Scholar
Gastine, T., Wicht, J. & Aurnou, J.M. 2015 Turbulent Rayleigh–Bénard convection in spherical shells. J. Fluid Mech. 778, 721764.10.1017/jfm.2015.401CrossRefGoogle Scholar
Griffiths, R.W. & Campbell, I.H. 1990 Stirring and structure in mantle starting plumes. Earth Planet. Sci. Lett. 99 (1–2), 6678.10.1016/0012-821X(90)90071-5CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16 (12), 44624472.10.1063/1.1807751CrossRefGoogle Scholar
Hartmann, D.L., Moy, L.A. & Fu, Q. 2001 Tropical convection and the energy balance at the top of the atmosphere. J. Clim. 14 (24), 44954511.2.0.CO;2>CrossRefGoogle Scholar
Herrmann, J. & Busse, F.H. 1993 Asymptotic theory of wall-attached convection in a rotating fluid layer. J. Fluid Mech. 255, 183194.10.1017/S0022112093002447CrossRefGoogle Scholar
Holton, J.R. 2004 An Introduction to Dynamic Meteorology. Elsevier Science & Technology Press.Google Scholar
Jiang, H., Wang, D., Liu, S. & Sun, C. 2022 Experimental evidence for the existence of the ultimate regime in rapidly rotating turbulent thermal convection. Phys. Rev. Lett. 129 (20), 204502.10.1103/PhysRevLett.129.204502CrossRefGoogle ScholarPubMed
Jiang, H., Zhu, X., Wang, D., Huisman, S.G. & Sun, C. 2020 Supergravitational turbulent thermal convection. Sci. Adv. 6 (40), eabb8676.10.1126/sciadv.abb8676CrossRefGoogle ScholarPubMed
Julien, K., Legg, S., McWilliams, J. & Werne, J. 1996 Rapidly rotating turbulent Rayleigh–Bénard convection. J. Fluid Mech. 322, 243273.10.1017/S0022112096002789CrossRefGoogle Scholar
King, M., Wilson, M. & Owen, J. 2007 Rayleigh–Bénard convection in open and closed rotating cavities. ASME J. Engng Gas Turbines Power 129, 305311.CrossRefGoogle Scholar
Kraichnan, R.H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5 (11), 13741389.CrossRefGoogle Scholar
Kunnen, R. 2021 The geostrophic regime of rapidly rotating turbulent convection. J. Turbul. 22, 130.CrossRefGoogle Scholar
Kunnen, R.P.J., Clercx, H.J.H. & van Heijst, G.J.F. 2013 The structure of sidewall boundary layers in confined rotating Rayleigh–Bénard convection. J. Fluid Mech. 727, 509532.10.1017/jfm.2013.285CrossRefGoogle Scholar
Kunnen, R.P.J., Geurts, B.J. & Clercx, H.J.H. 2010 Experimental and numerical investigation of turbulent convection in a rotating cylinder. J. Fluid Mech. 642, 445476.10.1017/S002211200999190XCrossRefGoogle Scholar
Kunnen, R.P.J., Stevens, R.J.A.M., Overkamp, J., Sun, C., van Heijst, G.F. & Clercx, H.J.H. 2011 The role of Stewartson and Ekman layers in turbulent rotating Rayleigh–Bénard convection. J. Fluid Mech. 688, 422442.CrossRefGoogle Scholar
Lappa, M. 2012 Rotating Thermal Flows in Natural and Industrial Processes. John Wiley & Sons.10.1002/9781118342411CrossRefGoogle Scholar
Liu, J., Lai, R., Zhong, J. & Ren, L. 2025 The influence of gravity on heat transfer and flow structure in centrifugal convection under low rotation. Phys. Fluids 37 (8), 085150.10.1063/5.0282025CrossRefGoogle Scholar
Lohse, D. & Shishkina, O. 2024 Ultimate Rayleigh–Bénard turbulence. Rev. Mod. Phys. 96, 035001.CrossRefGoogle Scholar
Lohse, D. & Xia, K. 2010 Small-scale roperties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.CrossRefGoogle Scholar
Lucas, P.G.J., Pfotenhauer, J.M. & Donnelly, R.J. 1983 Stability and heat transfer of rotating cryogens. Part 1. Influence of rotation on the onset of convection in liquid 4He. J. Fluid Mech. 129, 251264.10.1017/S0022112083000750CrossRefGoogle Scholar
Marshall, J. & Schott, F. 1999 Open-ocean convection: observations, theory, and models. Rev. Geophys. 37, 164.10.1029/98RG02739CrossRefGoogle Scholar
Niemela, J.J., Skrbek, L., Sreenivasan, K.R. & Donnelly, R.J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404 (6780), 837840.10.1038/35009036CrossRefGoogle ScholarPubMed
Owen, J.M. 2015 Review of buoyancy-induced flow in rotating cavities. J. Turbomach. 137 (11), 111001.10.1115/1.4031039CrossRefGoogle Scholar
Pitz, D.B., Marxen, O. & Chew, J.W. 2017 Onset of convection induced by centrifugal buoyancy in a rotating cavity. J. Fluid Mech. 826, 484502.10.1017/jfm.2017.451CrossRefGoogle Scholar
Rouhi, A., Lohse, D., Marusic, I., Sun, C. & Chung, D. 2021 Coriolis effect on centrifugal buoyancy-driven convection in a thin cylindrical shell. J. Fluid Mech. 910, A32.10.1017/jfm.2020.959CrossRefGoogle Scholar
Shishkina, O. 2016 Momentum and heat transport scalings in laminar vertical convection. Phys. Rev. E 93, 051102.10.1103/PhysRevE.93.051102CrossRefGoogle ScholarPubMed
Verzicco, R. & Camussi, R. 1999 Prandtl number effects in convective turbulence. J. Fluid Mech. 383, 5573.10.1017/S0022112098003619CrossRefGoogle Scholar
Vorobieff, P. & Ecke, R.E. 2002 Turbulent rotating convection: an experimental study. J. Fluid Mech. 458, 191218.10.1017/S0022112002007814CrossRefGoogle Scholar
Wang, D., Jiang, H., Liu, S., Zhu, X. & Sun, C. 2022 a Effects of radius ratio on annular centrifugal Rayleigh–Bénard convection. J. Fluid Mech. 930, A19.CrossRefGoogle Scholar
Wang, D., Liu, S., Zhou, Q. & Sun, C. 2022 b Spectra and structure functions of the temperature and velocity fields in supergravitational thermal turbulence. Phys. Fluids 34 (5), 055108.CrossRefGoogle Scholar
Wedemeyer, E.H. 1964 The unsteady flow within a spinning cylinder. J. Fluid Mech. 20 (3), 383399.10.1017/S002211206400129XCrossRefGoogle Scholar
Yao, Z., Emran, M.S., Teimurazov, A. & Shishkina, O. 2025 Direct numerical simulations of centrifugal convection: from gravitational to centrifugal buoyancy dominance. Intl J. Heat Mass Transfer 236, 126314.CrossRefGoogle Scholar
Zhang, X., Ecke, R.E. & Shishkina, O. 2021 Boundary zonal flows in rapidly rotating turbulent thermal convection. J. Fluid Mech. 915, A62.10.1017/jfm.2021.74CrossRefGoogle Scholar
Zhang, X., van Gils, D.P.M., Horn, S., Wedi, M., Zwirner, L., Ahlers, G., Ecke, R.E., Weiss, S., Bodenschatz, E. & Shishkina, O. 2020 Boundary zonal flow in rotating turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 124, 084505.10.1103/PhysRevLett.124.084505CrossRefGoogle ScholarPubMed
Zhang, X., Reiter, P., Shishkina, O. & Ecke, R.E. 2024 Wall modes and the transition to bulk convection in rotating Rayleigh–Bénard convection. Phys. Rev. Fluids 9 (5), 053501.CrossRefGoogle Scholar
Zhemin, T. & Yuan, W. 2002 Wind structure in an intermediate boundary layer model based on Ekman momentum approximation. Adv. Atmos. Sci. 19, 266278.10.1007/s00376-002-0021-0CrossRefGoogle Scholar
Zhong, J., Li, J. & Sun, C. 2024 Effect of radius ratio on the sheared annular centrifugal turbulent convection. J. Fluid Mech. 992, A16.10.1017/jfm.2024.543CrossRefGoogle Scholar
Zhong, J., Stevens, R.J.A.M., Clercx, H.J.H., Verzicco, R., Lohse, D. & Ahlers, G. 2009 Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 102 (4), 044502.CrossRefGoogle ScholarPubMed
Zhong, J., Wang, D. & Sun, C. 2023 From sheared annular centrifugal Rayleigh–Bénard convection to radially heated Taylor–Couette flow: exploring the impact of buoyancy and shear on heat transfer and flow structure. J. Fluid Mech. 972, A29.10.1017/jfm.2023.730CrossRefGoogle Scholar