Skip to main content
×
Home
    • Aa
    • Aa

Gravity-driven granular free-surface flow around a circular cylinder

  • X. Cui (a1) and J. M. N. T. Gray (a2)
Abstract
Abstract

Snow avalanches and other hazardous geophysical granular flows, such as debris flows, lahars and pyroclastic flows, often impact on obstacles as they flow down a slope, generating rapid changes in the flow height and velocity in their vicinity. It is important to understand how a granular material flows around such obstacles to improve the design of deflecting and catching dams, and to correctly interpret field observations. In this paper small-scale experiments and numerical simulations are used to investigate the supercritical gravity-driven free-surface flow of a granular avalanche around a circular cylinder. Our experiments show that a very sharp bow shock wave and a stagnation point are generated in front of the cylinder. The shock standoff distance is accurately reproduced by shock-capturing numerical simulations and is approximately equal to the reciprocal of the Froude number, consistent with previous approximate results for shallow-water flows. As the grains move around the cylinder the flow expands and the pressure gradients rapidly accelerate the particles up to supercritical speeds again. The internal pressure is not strong enough to immediately push the grains into the space behind the cylinder and instead a grain-free region, or granular vacuum, forms on the lee side. For moderate upstream Froude numbers and slope inclinations, the granular vacuum closes up rapidly to form a triangular region, but on steeper slopes both experiments and numerical simulations show that the pinch-off distance moves far downstream.

Copyright
Corresponding author
Email address for correspondence: x.cui@shu.ac.uk
References
Hide All
AkersB. & BokhoveO. 2008 Hydraulic flow through a channel contraction: multiple steady states. Phys. Fluids 20, 056601.
Ames Research Staff 1953 Equations, tables and charts for compressible flow. Tech. Rep. 1135. NACA.
AndersonJ. D. 1995 Computational Fluid Dynamics. McGraw-Hill.
BaroudiD., SovillaB. & ThibertE. 2011 Effects of flow regime and sensor geometry on snow avalanche impact-pressure measurements. J. Glaciol. 57, 277288.
BelouaggadiaN., OlivierH. & BrunR. 2008 Numerical and theoretical study of the shock stand-off distance in non-equilibrium flows. J. Fluid Mech. 607, 167197.
BörzsönyiT., HalseyT. C. & EckeE. 2008 Avalanche dynamics on a rough inclined bed. Phys. Rev. E 78, 011306.
BoudetJ. F., AmaroucheneY., BonnierB. & KellayH. 2007 The granular jump. J. Fluid Mech. 572, 413431.
BoudetJ. F. & KellayH. 2010 Drag coefficient for a circular obstacle in a quasi-two-dimensional dilute supersonic granular flow. Phys. Rev. Lett. 105, 104501.
BranneyM. J. & KokelaarB. P. 1992 A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull. Volcanol. 54, 504520.
BrennenC. E., SieckK. & PaslaskiJ. 1983 Hydraulic jumps in granular material flow. Powder Technol. 35, 3137.
BuchholtzV. & PöschelT. 1998 Interaction of a granular stream with an obstacle. Granul. Matt. 1, 3341.
ColeP. D., CalderE. S., DruittT. H., HoblittR., RobertsonR., SparksR. S. J. & YoungS. R. 1998 Pyroclastic flows generated by gravitational instability of the 1996–97 lava dome of Soufriere Hills Volcano, Montserrat. Geophys. Res. Lett. 25.
CourantR. & FriedrichsK. O. 1948 Supersonic Flow and Shock Waves. Interscience.
CourantR. & HilbertD. 1962 Methods of Mathematical Physics, vol. II. Interscience.
CuiX., GrayJ. M. N. T. & JohannessonT. 2007 Deflecting dams and the formation of oblique shocks in snow avalanches at Flateyri, Iceland. J. Geophys. Res. 112, F04012.
FaugT., GauerP., LiedK. & NaaimM. 2008 Overrun length of avalanches overtopping catching dams: cross-comparison of small-scale laboratory experiments and observations from full-scale avalanches. J. Geophys. Res. 113, F03009.
ForbesL. K. & SchwartzL. W. 1981 Supercritical flow past blunt bodies in shallow water. Z. Angew. Math. Phys. 32, 314328.
ForterreY. 2006 Kapiza waves as a test for three-dimensional granular flow rheology. J. Fluid Mech. 563, 123132.
GodunovS. K. 1959 A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik. 47, 271306.
GrayJ. M. N. T. 2001 Granular flow in partially filled slowly rotating drums. J. Fluid Mech. 441, 129.
GrayJ. M. N. T. & CuiX. 2007 Weak, strong and detached oblique shocks in gravity driven granular free-surface flows. J. Fluid Mech. 579, 113136.
GrayJ. M. N. T. & HutterK. 1997 Pattern formation in granular avalanches. Contin. Mech. Thermodyn. 9, 341345.
GrayJ. M. N. T. & KokelaarB. P. 2010 Large particle segregation, transport and accumulation in granular free-surface flows. J. Fluid Mech. 652, 105137.
GrayJ. M. N. T. & TaiY. C. 1998 Particle size segregation, granular shocks and stratification patterns. In Physics of Dry Granular Media (ed. Herrmann H. J., Hovi J. P. & Luding S.). NATO ASI Series, vol. 350, pp. 697702.
GrayJ. M. N. T., TaiY. C. & NoelleS. 2003 Shock waves, dead-zones and particle-free regions in rapid granular free-surface flows. J. Fluid Mech. 491, 161181.
GrayJ. M. N. T., WielandM. & HutterK. 1999 Free surface flow of cohesionless granular avalanches over complex basal topography. Proc. R. Soc. A 455, 18411874.
GrigourianS. S., EglitM. E. & IakimovI. L. 1967 New statement and solution of the problem of the motion of snow avalanche. Snow, Avalanches & Glaciers. Tr. Vysokogornogo Geofizich. Inst. 12, 104113.
HákonardóttirK. M. & HoggA. J. 2005 Oblique shocks in rapid granular flows. Phys. Fluids 17, 0077101.
HákonardóttirK. M., HoggA. J., BateyJ. & WoodsA. W. 2003 Flying avalanches. Geophys. Res. Lett. 30, 2191.
HaukssonS., PagliardiM., BarboliniM. & JóhannessonT. 2007 Laboratory measurements of impact forces of supercritical granular flow against mast-like obstacles. Cold Reg. Sci. Technol. 49, 5463.
HayesW. D. & ProbsteinR. F. 1966 Hypersonic Flow Theory. Academic.
HeilP., RerichaE. C., GoldmanD. I. & SwinneyH. L. 2004 Mach cone in a shallow granular fluid. Phys. Rev. E 70, 060301.
HidaK. 1953 An approximate study of the detached shock wave in front of a circular cylinder and a sphere. J. Phys. Soc. Japan 8, 740745.
HuK., WeiF. & LiY. 2011 Real-time measurement and preliminary analysis of debris-flow impact force at Jiangjia Ravine, China. Earth Surf. Process. Landf. 36, 12681278.
HungrO. & MorgensternN. R. 1984a Experiments on the flow behaviour of granular materials at high velocity in an open channel flow. Geotechnique 34, 405413.
HungrO. & MorgensternN. R. 1984b High velocity ring shear tests on sand. Geotechnique 34, 415421.
IppenA. T. 1949 Mechanics of supercritical flow. ASCE 116, 268295.
IversonR. M. 1997 The physics of debris-flows. Rev. Geophys. 35, 245296.
IversonR. M. & DenlingerR. P. 2001 Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory. J. Geophys. Res. 106 (B1), 553566.
JiangG. S., LevyD., LinC. T., OsherS. & TadmorE. 1998 High-resolution nonoscillatory central schemes with non-staggerred grids for hyperbolic conservation laws. SIAM J. Numer. Anal. 35 (6), 21472168.
JóhannessonT. 2001 Run-up of two avalanches on the deflecting dams at Flateyri, northwest Iceland. Ann. Glaciol. 32, 350354.
JóhannessonT., GauerP., IsslerP. & LiedK. 2009 The design of avalanche protection dams: recent practical and theoretical developments. Tech. Rep. EUR 23339. European Commission.
JohnsonC. G. & GrayJ. M. N. T. 2011 Granular jets and hydraulic jumps on an inclined plane. J. Fluid Mech. 675, 87116.
JohnsonC. G., KokelaarB. P., IversonR. M., LoganM., LaHusenR. G. & GrayJ. M. N. T. 2012 Grain-size segregation and levee formation in geophysical mass flows. J. Geophys. Res. 117, F01032.
JomelliV. & BertranP. 2001 Wet snow avalanche deposits in the French Alps: structure and sedimentology. Geografis. Annal. Ser. A, Phys. Geograph. 83, 1528.
KimC. S. 1956 Experimental studies of supersonic flow past a circular cylinder. J. Phys. Soc. Japan 11, 439445.
LandauL. D. & LifshitzE. M. 1959 Fluid Mechanics. Pergamon.
LeVequeR. J. 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.
LighthillM. J. 1957 Dynamics of a dissociating gas. part 1. equilibrium flow. J. Fluid Mech. 2, 132.
LinC. C. & RubinovS. I. 1948 On the flow behind curved shocks. J. Math. Phys. 27, 105129.
LobbR. K. 1964 Experimental measurement of shock detachment distance on spheres fired in air at hypervelocities. In The High Temperature Aspects of Hypersonic Flow (ed. Nelson W. C.), pp. 519527. Pergamon.
LouieK. & OckendonJ. R. 1991 Mathematical aspects of the theory of inviscid hypersonic flow. Phil. Trans. R. Soc. A 335, 121138.
MangeneyA., BouchutF., ThomasN., VilotteJ. P. & BristeauM. O. 2007 Numerical modeling of self-channeling granular flows and of their levee-channel deposits. J. Geophys. Res. 112, F02017.
Mangeney-CastelnauA., VilotteJ. P., BristeauM. O., PerthameB., BouchutF., SimeoniC. & YerneniS. 2003 Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme. J. Geophys. Res. 108, 2527.
MignotE. & RiviereN. 2010 Bow-wave-like hydraulic jump and horseshoe vortex around an obstacle in a supercritical open channel flow. Phys. Fluids 22, 117105.
NessyahuH. & TadmorE. 1990 Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408463.
PouliquenO. 1999 Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11 (3), 542548.
PouliquenO. & ForterreY. 2002 Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133151.
PreiswerkE. 1938 Anwendung gasdynamischer Methoden auf Wasserströmungen mit freier Oberfläche. PhD thesis, ETH Zürich.
RerichaE. C., BizonC., ShattuckM. & SwinneyH. 2002 Shocks in supersonic sand. Phys. Rev. Lett. 88, 014302.
RouseH. 1938 Fluid Mechanics for Hydraulic Engineers. McGraw-Hill.
SavageS. 1979 Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92, 5396.
SavageS. B. & HutterK. 1989 The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177215.
ShinbrotT. & MuzzioF. J. 1998 Reverse buoyancy in shaken granular beds. Phys. Rev. Lett. 81 (20), 43654368.
SigurdssonF., TomassonG. G. & SandersenF. 1998 Avalanche defences for flateyri, iceland. from hazard evaluation to construction of defences. Tech. Rep. 203. Norw. Geotech. Inst., Oslo.
SovillaB., SchaerM., KernM. & BarteltP. 2008 Impact pressures and flow regimes in dense snow avalanches observed at the Vallée de la Sionne test site. J. Geophys. Res. 114, F01010.
TaiY. C., GrayJ. M. N. T., HutterK. & NoelleS. 2001 Flow of dense avalanches past obstructions. Annal. Glaciol. 32, 281284.
TaiY. C., WangY. Q., GrayJ. M. N. T. & HutterK. 1999 Methods of similitude in granular avalanche flows. In Advances In Cold-Region Thermal Engineering And Sciences: Technological, Environmental and Climatological Impact (ed. Hutter K., Wang Y. Q. & Beer H.), Lecture Notes in Physics, vol. 533, pp. 415428. Springer.
VallanceJ. W. 2000 Lahars. In Encyclopedia of Volcanoes (ed. Sigurdsson H.), pp. 601616. Academic.
VinokurM. 1974 Conservation equations of gas dynamics in curvilinear coordinate systems. J. Comput. Phys. 14, 105125.
ViviandH. 1974 Conservative forms of gas dynamic equations. Rech. Aerosp. 1971-1, 65–68.
VremanA. W., Al-TaraziM., KuipersJ. A. M., Van Sint AnnalandM. & BokhoveO. 2007 Supercritical shallow granular flow through a contraction: experiment, theory and simulation. J. Fluid Mech. 578, 233269.
WassgrenC. R., CordovaJ. A., ZenitR. & KarionA. 2003 Dilute granular flow around an immersed cylinder. Phys. Fluids 15 (11), 33183330.
WielandM., GrayJ. M. N. T. & HutterK. 1999 Channelised free surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature. J. Fluid Mech. 392, 73100.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Type Description Title
VIDEO
Movies

Cui and Gray supplementary movie
Movie showing the flow of a sand avalanche past a circular cylinder as in figures 7 and 8.

 Video (772 KB)
772 KB
VIDEO
Movies

Cui and Gray supplementary movie
Movie showing the development of the steady state non-pareille avalanche

 Video (2.8 MB)
2.8 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 86 *
Loading metrics...

Abstract views

Total abstract views: 274 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.