Skip to main content

Healing capillary films

  • Zhong Zheng (a1) (a2), Marco A. Fontelos (a3), Sangwoo Shin (a1) (a4), Michael C. Dallaston (a5), Dmitri Tseluiko (a6), Serafim Kalliadasis (a5) and Howard A. Stone (a1)...

Consider the dynamics of a healing film driven by surface tension, that is, the inward spreading process of a liquid film to fill a hole. The film is modelled using the lubrication (or thin-film) approximation, which results in a fourth-order nonlinear partial differential equation. We obtain a self-similar solution describing the early-time relaxation of an initial step-function condition and a family of self-similar solutions governing the finite-time healing. The similarity exponent of this family of solutions is not determined purely from scaling arguments; instead, the scaling exponent is a function of the finite thickness of the prewetting film, which we determine numerically. Thus, the solutions that govern the finite-time healing are self-similar solutions of the second kind. Laboratory experiments and time-dependent computations of the partial differential equation are also performed. We compare the self-similar profiles and exponents, obtained by matching the estimated prewetting film thickness, with both measurements in experiments and time-dependent computations near the healing time, and we observe good agreement in each case.

Corresponding author
Email addresses for correspondence:,,
Hide All

Z. Zheng and M. A. Fontelos contributed equally to this work.


Present address: School of Computing, Electronics and Mathematics, and Flow Measurement and Fluid Mechanics Research Centre, Coventry University, Coventry CV1 5FB, UK.

Hide All
Backholm, M., Benzaquen, M., Salez, T., Raphael, E. & Dalnoki-Veress, K. 2014 Capillary leveling of a cylindrical hole in a viscous film. Soft Matt. 10, 25502558.
Bankoff, S. G., Johnson, M. F. G., Miksis, M. J., Schluter, R. A. & López, P. G. 2003 Dynamics of a dry spot. J. Fluid Mech. 486, 239259.
Barenblatt, G. I.1979 Similarity, Self-Similarity, and Intermediate Asymptotics. Consultants Bureau.
Bender, C. M. & Orszag, S. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.
Bertozzi, A. L., Brenner, M. P., Dupont, T. F. & Kadanoff, L. P. 1994 Trends and perspectives in applied mathematics. In Applied Mathematical Sciences, pp. 155208. Springer.
Bischofberger, I., Ramachandran, R. & Nagel, S. R. 2014 Fingering versus stability in the limit of zero interfacial tension. Nat. Commun. 5, 5265.
Blossey, R. 2003 Self-cleaning surfaces: virtual realities. Nat. Mater. 2, 301306.
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.
Bostwick, J. B., Dijksman, J. A. & Shearer, M. 2017 Wetting dynamics of a collapsing fluid hole. Phys. Rev. Fluids 2, 014006.
Brenner, M. P., Lister, J. R. & Stone, H. A. 1996 Pinching threads, singularities and the number 0.0304. Phys. Fluids 8, 28272836.
Bretherton, F. P. 1961 The motion of long bubbles in a tube. J. Fluid Mech. 10, 166188.
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 11311198.
Dallaston, M. C., Tseluiko, D., Zheng, Z., Fontelos, M. A. & Kalliadasis, S. 2017 Self-similar finite-time singularity formation in degenerate parabolic equations arising in thin-film flows. Nonlinearity 30, 26472666.
Diez, J. A., Gratton, R. & Gratton, J. 1992 Self-similar solution of the second kind for a convergent viscous gravity current. Phys. Fluids A 6, 11481155.
Dijksman, J. A., Mukhopadhyay, S., Gaebler, C., Witelski, T. P. & Behringer, R. P. 2015 Obtaining self-similar scalings in focusing flows. Phys. Rev. E 92, 043016.
Doedel, E. J., Champneys, R., Dercole, F., Fairgrieve, T. F., Kuznetsov, Yu. A., Oldeman, B., Paffenroth, R. C., Sandstede, B., Wang, X. J. & Zhang, C. H.2007 Auto 07p: continuation and bifurcation software for ordinary differential equations. Montreal Concordia University;
Duffy, B. R. & Wilson, S. K. 1996 A third-order differential equation arising in thin-film flows and relevant to Tanners law. Appl. Maths Lett. 10, 6368.
Eggers, J. 1993 Universal pinching of 3D axisymmetric free surface flow. Phys. Rev. Lett. 71, 34583460.
Eggers, J. 2004 Toward a description of contact line motion at higher capillary numbers. Phys. Fluids 16, 34913494.
Eggers, J. & Fontelos, M. A. 2009 The role of self-similarity in singularities of partial differential equations. Nonlinearity 22, R1R44.
Eggers, J. & Fontelos, M. A. 2015 Singularities: Formation, Structure, and Propagation. Cambridge University Press.
Feng, J., Roche, M., Vigolo, D., Arnaudov, L. N., Stoyanov, S. D., Tsutsumanova, G. G. & Stone, H. A. 2014 Nanoemulsions obtained via bubble-bursting at a compound interface. Nat. Phys. 10, 606612.
de Gennes, P. G., Hua, X. & Levinson, P. 1990 Dynamics of wetting: local contact angle. J. Fluid Mech. 212, 5563.
Gratton, J. & Minotti, F. 1990 Self-similar viscous gravity currents: phase plane formalism. J. Fluid Mech. 210, 155182.
Herminghaus, S., Brinkmann, M. & Seemann, R. 2008 Wetting and dewetting of complex surface geometries. Annu. Rev. Mater. Sci. 38, 101121.
Hocking, L. M. 1983 The spreading of a thin drop by gravity and capillarity. Q. J. Mech. Appl. Maths 36 (Feb), 5569.
Huppert, H. E. & Woods, A. W. 1995 Gravity driven flows in porous layers. J. Fluid Mech. 292, 5569.
Jensen, O. E. 1994 Self-similar, surfactant-driven flows. Phys. Fluids 6, 10841094.
Kalliadasis, S., Bielarz, C. & Homsy, G. M. 2000 Steady free-surface thin film flows over topography. Phys. Fluids 12, 18891898.
Kataoka, D. E. & Troian, S. M. 1997 A theoretical study of instabilities at the advancing front of thermally driven coating films. J. Colloid Interface Sci. 192, 350362.
Landau, L. & Levich, B. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. URSS 17, 4254.
Levy, R. & Shearer, M. 2004 Comparison of two dynamic contact line models for driven thin liquid films. Eur. J. Appl. Maths 15, 625642.
Lister, J. R. & Kerr, R. C. 1989 The propagation of two-dimensional and axisymmetric viscous gravity currents at a fluid interface. J. Fluid Mech. 203, 215249.
Lister, J. R. & Stone, H. A. 1998 Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids 11, 27582764.
López, P. G., Miksis, M. J. & Bankoff, S. G. 2001 Stability and evolution of a dry spot. Phys. Fluids 13, 16011614.
McGraw, J. D., Salez, T., Baumchen, O., Raphael, E. & Dalnoki-Veress, K. 2012 Self-similarity and energy dissipation in stepped polymer films. Phys. Rev. Lett. 109, 128303.
Moriarty, J. A. & Schwartz, L. W. 1993 Dynamic considerations in the closing and opening of holes in thin liquid films. J. Colloid Interface Sci. 161, 335342.
Myers, T. G. 1998 Thin films with high surface tension. SIAM Rev. 40, 441462.
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.
Padday, J. F. 1971 The profile of axially symmetric menisci. Phil. Trans. R. Soc. Lond. A 269, 265293.
Papageorgiou, D. T. 1995 On the breakup of viscous liquid threads. Phys. Fluids 7, 15291544.
Savva, N. & Kalliadasis, S. 2009 Two-dimensional droplet spreading over topographical substrates. Phys. Fluids 21, 092102.
Savva, N. & Kalliadasis, S. 2011 Dynamics of moving contact lines: a comparison between slip and precursor film models. Europhys. Lett. 94, 64004.
Sharma, A. & Ruckenstein, E. 1990 Energetic criteria for the breakup of liquid films on nonwetting solid surfaces. J. Colloid Interface Sci. 137, 433445.
Snoeijer, J. H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.
Stone, H. A. & Duprat, C.2016 Low-Reynolds-number flows. In RSC Soft Matter Series, chap. 2, pp. 25–77. Royal Society of Chemistry (RSC).
Tanner, L. H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12, 14731485.
Tseluiko, D., Baxter, J. & Thiele, U. 2013 A homotopy continuation approach for analysing finite-time singularities in thin liquid films. IMA J. Appl. Maths 78, 762776.
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11, 714721.
Witelski, T. P. & Bernoff, A. J. 1999 Stability of self-similar solutions for van der Waals driven thin film rupture. Phys. Fluids 11, 24432445.
Yatsyshin, P., Parry, A. O. & Kalliadasis, S. 2016 Complete prewetting. J. Phys.: Condens. Matter 28, 275001.
Yatsyshin, P., Savva, N. & Kalliadasis, S. 2015 Wetting of prototypical one-and two-dimensional systems: thermodynamics and density functional theory. J. Chem. Phys. 142, 034708.
Zhang, W. W. & Lister, J. R. 1999 Similarity solutions for van der Waals rupture of a thin film on a solid substrate. Phys. Fluids 9, 24542462.
Zheng, Z., Christov, I. C. & Stone, H. A. 2014 Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents. J. Fluid Mech. 747, 218246.
Zheng, Z., Shin, S. & Stone, H. A. 2015 Converging gravity currents over a permeable substrate. J. Fluid Mech. 778, 669690.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 13
Total number of PDF views: 343 *
Loading metrics...

Abstract views

Total abstract views: 609 *
Loading metrics...

* Views captured on Cambridge Core between 16th January 2018 - 26th May 2018. This data will be updated every 24 hours.