Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T11:00:40.727Z Has data issue: false hasContentIssue false

Heat transfer from a circular cylinder by acoustic streaming

Published online by Cambridge University Press:  28 March 2006

Peter D. Richardson
Affiliation:
Division of Engineering, Brown University, Providence, R.I. 02912

Abstract

An analysis is described for convection from a circular cylinder subjected to transverse oscillations relative to the fluid in which it is immersed. The analysis is based upon use of the acoustic streaming flow field. It is assumed that the frequency involved is sufficiently small that the acoustic wavelength in the fluid is much larger than the cylinder diameter, and that there is no externally imposed mean flow across or along the cylinder. Solutions are presented which are appropriate for a wide range of Prandtl number, and the cases of small and of large streaming Reynolds number are distinguished. The analysis compares favourably with experiments when the influence of natural convection is small.

Type
Research Article
Copyright
© 1967 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Evans, H. L. 1962 Int. J. Heat Mass Transfer, 5, 35.
Fand, R. M. & Kaye, J. 1961a Trans. Am. Soc. Mech. Engrs, J. Heat Transfer, 83, 133.
Fand, R. M. & Kaye, J. 1961b Int. Developments in Heat Transfer (Proc. 2nd Int. Conf.), Part 11, 490.
Fand, R. M. & Peebles, E. M. 1962 Trans. Am. Soc. Mech. Engrs, J. Heat Transfer, 84, 268.
Gerrard, J. H. 1965 J. Fluid Mech. 22, 187.
Holtsmark, J., Johnson, I., Sikkeland, T. & Skavlem, S. 1954 J. Acoust. Soc. Am. 26, 102.
Jameson, G. J. 1964 Chem. Engng Sci. 19, 793.
Kubanskii, P. N. 1962 Akust. Zhur. 8, 85.
Lee, B. H. & Richardson, P. D. 1965 J. Mech. Engng Sci. 7, 127.
Lemlich, R. & Rao, M. A. 1965 Int. J. Heat Mass Transfer, 8, 27.
Martinelli, R. C. & Boelter, L. M. K. 1938 Proc. 5th Intl. Congr. Appl. Mech. 578.
Meksyn, D. 1961 New Methods in Laminar Boundary-Layer Theory. Oxford: Pergamon.
Merk, H. J. 1959 J. Fluid Mech. 5, 460.
Pearson, K. 1934 Tables of the Incomplete Beta Function. London: Biometrika.
Raney, W. P., Corelli, J. C. & Westervelt, P. J. 1954 J. Acoust. Soc. Am. 26, 1006.
Rao, K., Raju, S. & Rao, C. V. 1963 Indian Chem. Engr. 5, 100.
Richardson, P. D. 1964 J. Acoust. Soc. Am. 36, 2323.
Richardson, P. D. 1966 Proc. 3rd Intl. Heat Transfer Conf. 3, 71.
Richardson, P. D. 1967 Appl. Mech. Rev. 20, 201.
Rosenhead, L. 1963 (Ed.) Laminar Boundary Layers. Oxford University Press.
Schlichting, H. 1932 Z. Phys. 61, 349.
Stuart, J. T. 1963 see Rosenhead (1963).
Stuart, J. T. 1966 J. Fluid Mech. 24, 673.