Skip to main content Accessibility help
×
Home

Helicoidal particles in turbulent flows with multi-scale helical injection

  • L. Biferale (a1), K. Gustavsson (a2) and R. Scatamacchia (a1)

Abstract

We present numerical and theoretical results concerning the properties of turbulent flows with strong multi-scale helical injection. We perform direct numerical simulations of the Navier–Stokes equations under a random helical stirring with power-law spectrum and with different intensities of energy and helicity injections. We show that there exists three different regimes where the forward energy and helicity inertial transfers are: (i) both leading with respect to the external injections, (ii) energy transfer is leading and helicity transfer is sub-leading and (iii) both are sub-leading and helicity is maximal at all scales. As a result, the cases (ii)–(iii) give flows with Kolmogorov-like inertial energy cascade and tuneable helicity transfers/contents. We further explore regime (iii) by studying its effect on the kinetics of point-like isotropic helicoids, particles whose dynamics is isotropic but breaks parity invariance. We investigate small-scale fractal clustering and preferential sampling of intense helical flow structures. Depending on their structural parameters, the isotropic helicoids either preferentially sample co-chiral or anti-chiral flow structures. We explain these findings in limiting cases in terms of what is known for spherical particles of different densities and degrees of inertia. Furthermore, we present theoretical and numerical results for a stochastic model where dynamical properties can be calculated using analytical perturbation theory. Our study shows that a suitable tuning of the stirring mechanism can strongly modify the small-scale turbulent helical properties and demonstrates that isotropic helicoids are the simplest particles able to preferentially sense helical properties in turbulence.

Copyright

Corresponding author

Email address for correspondence: kristian.gustafsson@physics.gu.se

References

Hide All
Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767–769, 1101.10.1016/j.physrep.2018.08.001
Bec, J. 2003 Fractal clustering of inertial particles in random flows. Phys. Fluids 15, L8184.10.1063/1.1612500
Bec, J. 2005 Multifractal concentrations of inertial particles in smooth random flows. J. Fluid Mech. 528, 255277.
Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98, 084502.10.1103/PhysRevLett.98.084502
Biferale, L., Lanotte, A. S. & Toschi, F. 2004 Effects of forcing in three-dimensional turbulent flows. Phys. Rev. Lett. 92 (9), 094503.
Biferale, L., Musacchio, S. & Toschi, F. 2012 Inverse energy cascade in three-dimensional isotropic turbulence. Phys. Rev. Lett. 108 (16), 164501.10.1103/PhysRevLett.108.164501
Biferale, L. & Titi, E. 2013 On the global regularity of a helical-decimated version of the 3D Navier–Stokes equations. J. Stat. Phys. 151, 10891098.10.1007/s10955-013-0746-4
Borue, V. & Orszag, S. A. 1995 Self-similar decay of three-dimensional homogeneous turbulence with hyperviscosity. Phys. Rev. E 51, R856R859.
Borue, V. & Orszag, S. A. 1997 Spectra in helical three-dimensional homogeneous isotropic turbulence. Phys. Rev. E 55 (6), 7005.
Briard, A. & Gomez, T. 2017 Dynamics of helicity in homogeneous skew-isotropic turbulence. J. Fluid Mech. 821, 539581.
Brissaud, A., Frisch, U., Leorat, J., Lesieur, M. & Mazure, A. 1973 Helicity cascades in fully developed isotropic turbulence. Phys. Fluids 16 (8), 13661367.
Calzavarini, E., Volk, R., Bourgoin, M., Leveque, E., Pinton, J. F. & Toschi, F. 2009 Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces. J. Fluid Mech. 630, 179189.
Chen, Q., Chen, S. & Eyink, G. L. 2003a The joint cascade of energy and helicity in three-dimensional turbulence. Phys. Fluids 15 (2), 361374.
Chen, Q., Chen, S., Eyink, G. L. & Holm, D. D. 2003b Intermittency in the joint cascade of energy and helicity. Phys. Rev. Lett. 90 (21), 214503.
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765777.
Constantin, P. & Majda, A. 1988 The Beltrami spectrum for incompressible fluid flows. Commun. Math. Phys. 115 (3), 435456.
Deusebio, E. & Lindborg, E. 2014 Helicity in the Ekman boundary layer. J. Fluid Mech. 755, 654671.10.1017/jfm.2014.307
Falkovich, G. & Pumir, A. 2007 Sling effect in collisions of water droplets in turbulent clouds. J. Atmos. Sci. 64, 44974505.
Fessler, J. R., Kulick, J. D. & Eaton, J. K. 1994 Preferential concentration of heavy particles in a turbullent channel flow. Phys. Fluids 6, 37423749.
Forster, D., Nelson, R. D. & Stephen, J. M. 1977 Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732749.10.1103/PhysRevA.16.732
Frederickson, P., Kaplan, J. L. & Yorke, E. D. 1983 The Liapunov dimension of strange attractors. J. Differ. Equ. 49, 185207.
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.10.1017/CBO9781139170666
Frisch, U., Kurien, S., Pandit, R., Pauls, W., Ray, S. S., Wirth, A. & Zhu, J. Z. 2008 Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence. Phys. Rev. Lett. 101, 144501.
Gustavsson, K., Berglund, F., Jönsson, P. R. & Mehlig, B. 2015 Preferential sampling and small-scale clustering of gyrotactic microswimmers in turbulence. Phys. Rev. Lett. 116, 108104.
Gustavsson, K. & Biferale, L. 2016 Preferential sampling of helicity by isotropic helicoids. Phys. Rev. Fluids 1, 054201.
Gustavsson, K., Jucha, J., Naso, A., Lévêque, E., Pumir, A. & Mehlig, B. 2017 Statistical model for the orientation of non-spherical particles settling in turbulence. Phys. Rev. Lett. 119, 254501.
Gustavsson, K. & Mehlig, B. 2011 Ergodic and non-ergodic clustering of inertial particles. Europhys. Lett. 96, 60012.10.1209/0295-5075/96/60012
Gustavsson, K. & Mehlig, B. 2016 Statistical models for spatial patterns of heavy particles in turbulence. Adv. Phys. 65, 157.10.1080/00018732.2016.1164490
Happel, J. & Brenner, H. 2012 Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1. Springer.
Herbert, E., Daviaud, F., Dubrulle, B., Nazarenko, S. & Naso, A. 2012 Dual non-Kolmogorov cascades in a von Kármán flow. Europhys. Lett. 100 (4), 44003.
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.
Kedia, H., Foster, D., Dennis, M. R. & Irvine, W. T. 2016 Weaving knotted vector fields with tunable helicity. Phys. Rev. Lett. 117 (27), 274501.
Thomson, W. (Lord Kelvin) 1872 On the motion of free solids through a liquid. Proc. R. Soc. Edin. 7, 384390.
Kerr, R. M. 1987 Histograms of helicity and strain in numerical turbulence. Phys. Rev. Lett. 59 (7), 783786.10.1103/PhysRevLett.59.783
Kerr, R. M.2015 Simulated Navier–Stokes trefoil reconnection. arXiv:1509.03142.
Kessar, M., Plunian, F., Stepanov, R. & Balarac, G. 2015 Non-Kolmogorov cascade of helicity-driven turbulence. Phys. Rev. E 92 (3), 031004.
Kholmyansky, M., Kit, E., Teitel, M. & Tsinober, A. 1991 Some experimental results on velocity and vorticity measurements in turbulent grid flows with controlled sign of mean helicity. Fluid Dyn. Res. 7 (2), 6575.
Kit, E., Tsinober, A., Balint, J., Wallace, J. & Levich, E. 1987 An experimental study of helicity related properties of a turbulent flow past a grid. Phys. Fluids 30 (11), 33233325.10.1063/1.866463
Kleckner, D. & Irvine, W. T. 2013 Creation and dynamics of knotted vortices. Nat. Phys. 9 (4), 253258.10.1038/nphys2560
Koprov, B., Koprov, V., Ponomarev, V. & Chkhetiani, O. 2005 Experimental studies of turbulent helicity and its spectrum in the atmospheric boundary layer. Dokl. Phys. 50, 419422.
Kurgansky, M. 2017 Helicity in dynamic atmospheric processes. Izv. Atmos. Ocean. Phys. 53 (2), 127141.10.1134/S0001433817020074
Laing, C. E., Ricca, R. L. & De Witt, L. S. 2015 Conservation of writhe helicity under anti-parallel reconnection. Sci. Rep. 5, 9224.10.1038/srep09224
Linkmann, M. 2018 Effects of helicity on dissipation in homogeneous box turbulence. J. Fluid. Mech. 856, 79102.
Maxey, M. R. 1987 The gravitational settling of aerosol particles inhomogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.10.1063/1.864230
Moffatt, H. & Tsinober, A. 1992 Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24 (1), 281312.10.1146/annurev.fl.24.010192.001433
Pelz, R. B., Yakhot, V., Orszag, S. A., Shtilman, L. & Levich, E. 1985 Velocity-vorticity patterns in turbulent flow. Phys. Rev. Lett. 54 (23), 2505.
Qu, B., Naso, A. & Bos, W. J. 2018 Cascades of energy and helicity in axisymmetric turbulence. Phys. Rev. Fluids 3 (1), 014607.10.1103/PhysRevFluids.3.014607
Sahoo, G., Bonaccorso, F. & Biferale, L. 2015 Role of helicity for large- and small-scale turbulent fluctuations. Phys. Rev. E 92, 051002.
Sain, A., Manu & Pandit, R. 1998 Turbulence and multiscaling in the randomly forced navier-stokes equation. Phys. Rev. Lett. 81 (20), 4377.
Scheeler, M. W., Kleckner, D., Proment, D., Kindlmann, G. L. & Irvine, W. T. 2014 Helicity conservation by flow across scales in reconnecting vortex links and knots. Proc. Natl Acad. Sci. USA 111 (43), 1535015355.
Seoud, R. E. & Vassilicos, J. C. 2007 Dissipation and decay of fractal-generated turbulence. Phys. Fluids 19, 105108.10.1063/1.2795211
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid. Mech. 41, 375404.
Vallefuoco, D., Naso, A. & Godeferd, F. S. 2018 Small-scale anisotropy induced by spectral forcing and by rotation in non-helical and helical turbulence. J. Turbul. 19, 107140.10.1080/14685248.2017.1400667
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4 (2), 350363.10.1063/1.858309
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed