Skip to main content Accessibility help
×
Home

High-speed visualization of vortical cavitation using synchrotron radiation

  • Ioannis K. Karathanassis (a1), Phoevos Koukouvinis (a1), Efstathios Kontolatis (a1), Zhilong Lee (a2), Jin Wang (a2), Nicholas Mitroglou (a1) and Manolis Gavaises (a1)...

Abstract

High-speed X-ray phase-contrast imaging of the cavitating flow developing within an axisymmetric throttle orifice has been conducted using high-flux synchrotron radiation. A white X-ray beam with energy of 6 keV was utilized to visualize the highly turbulent flow at 67 890 frames per second with an exposure time of 347 ns. The working medium employed was commercial diesel fuel at flow conditions characterized by Reynolds and cavitation numbers in the range of 18 000–35 500 and 1.6–7.7, respectively. Appropriate post-processing of the obtained side-view radiographs enabled the detailed illustration of the interface topology of the arising vortical cavity. In addition, the visualization temporal and spatial resolution allowed the correlation of the prevailing flow conditions to the periodicity of cavitation onset and collapse, to the magnitude of the underlying vortical motion, as well as to the local turbulence intensity.

Copyright

Corresponding author

Email address for correspondence: Ioannis.Karathanassis@city.ac.uk

References

Hide All
Arndt, R. E. A. 2002 Cavitation in vortical flows. Annu. Rev. Fluid Mech. 34, 143175.
Arndt, R. E. A. & Keller, A. P. 1992 Water quality effects on cavitation inception in a trailing vortex. J. Fluids Engng 114 (3), 430438.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Bottaro, A. 1993 On longitudinal vortices in curved channel flow. J. Fluid Mech. 251, 627660.
Boulon, O., Callenaere, M., Franc, J. P. & Michel, J. M. 1999 An experimental insight into the effect of confinement on tip vortex cavitation of an elliptical hydrofoil. J. Fluid Mech. 390, 123.
Bourgoyne, D. A., Ceccio, S. L. & Dowling, D. R. 2005 Vortex shedding from a hydrofoil at high Reynolds number. J. Fluid Mech. 531, 293324.
Brandner, P. A., Walker, G. J., Niekamp, P. N. & Anderson, B. 2010 An experimental investigation of cloud cavitation about a sphere. J. Fluid Mech. 656, 147176.
Bröder, D. & Sommerfeld, M. 2003 Combined PIV/PTV-measurements for the analysis of bubble interactions and coalescence in a turbulent flow. Can. J. Chem. Engng 81 (3–4), 756763.
Choi, J. & Ceccio, S. L. 2007 Dynamics and noise emission of vortex cavitation bubbles. J. Fluid Mech. 575, 126.
Choi, J., Hsiao, C.-T., Chahine, G. & Ceccio, S. 2009 Growth, oscillation and collapse of vortex cavitation bubbles. J. Fluid Mech. 624, 255279.
Coutier-Delgosha, O., Stutz, B., Vabre, A. & Legoupil, S. 2007 Analysis of cavitating flow structure by experimental and numerical investigations. J. Fluid Mech. 578, 171222.
Duke, D. J., Kastengren, A. L., Tilocco, F. Z., Swantek, A. B. & Powell, C. F. 2013 X-Ray radiography measurements of cavitating nozzle flow. Atomiz. Sprays 23 (9), 841860.
Ganesh, H., Mäkiharju, S. A. & Ceccio, S. L. 2016 Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities. J. Fluid Mech. 802, 3778.
Gopalan, S. & Katz, J. 2000 Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 12 (4), 895911.
Hess, D. 2011 Vortex formation with a snapping shrimp claw. PLoS ONE 101 (11), 14351439.
Im, K.-S., Cheong, S.-K., Powell, C. F., Lai, M.-C. D. & Wang, J. 2013 Unraveling the geometry dependence of in-nozzle cavitation in high-pressure injectors. Sci. Rep. 3, 37.
Karn, A., Arndt, R. E. A. & Hong, J. 2016 An experimental investigation into supercavity closure mechanisms. J. Fluid Mech. 789, 259284.
Kastengren, A., Tilocco, F. Z., Duke, D. & Powell, C. F. 2012 Time-resolved X-ray radiography of sprays from engine combustion network spray a diesel injectors. Atomiz. Sprays 24 (3), 251272.
Kini, V., Bachmann, C., Fontaine, A., Deutsch, S. & Tarbell, J. M. 2000 Flow visualization in mechanical heart valves: occluder rebound and cavitation potential. Ann. Biomed. Engng 28 (4), 431441.
Kitagawa, A., Hishida, K. & Kodama, Y. 2005 Flow structure of microbubble-laden turbulent channel flow measured by PIV combined with the shadow image technique. Exp. Fluids 38 (4), 466475.
Kolev, N. 2007 Multiphase Flow Dynamics 3. Springer.
Koukouvinis, P., Mitroglou, N., Gavaises, M., Lorenzi, M. & Santini, M. 2017 Quantitative predictions of cavitation presence and erosion-prone locations in a high-pressure cavitation test rig. J. Fluid Mech. 819, 2157.
Kovesi, P.1995 Image features from phase congruency. Tech. Rep. 95/4. University of Western Australia.
Lanzerstorfer, D. & Kuhlmann, H. C. 2012 Three-dimensional instability of the flow over a forward-facing step. J. Fluid Mech. 695, 390404.
Linne, M. 2012 Analysis of X-ray phase contrast imaging in atomizing sprays. Exp. Fluids 52 (5), 12011218.
Mitroglou, N., Lorenzi, M., Santini, M. & Gavaises, M. 2016 Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows. Exp. Fluids 57 (11), 175.
Mitroglou, N., Stamboliyski, V., Karathanassis, I. K., Nikas, K. S. & Gavaises, M. 2017 Cloud cavitation vortex shedding inside an injector nozzle. Exp. Therm. Fluid Sci. 84, 179189.
Moffat, R. J. 1988 Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1 (1), 317.
Moon, S. 2016 Novel insights into the dynamic structure of biodiesel and conventional fuel sprays from high-pressure diesel injectors. Energy 115, 615625.
Mueller, A., Dreyer, M., Andreini, N. & Avellan, F. 2013 Draft tube discharge fluctuation during self-sustained pressure surge: fluorescent particle image velocimetry in two-phase flow. Exp. Fluids 54 (4).
O’Hern, T. J. 1990 An experimental investigation of turbulent shear flow cavitation. J. Fluid Mech. 215, 3948.
Pang, M. & Wei, J. 2013 Experimental investigation on the turbulence channel flow laden with small bubbles by PIV. Chem. Engng Sci. 94, 302315.
Pennings, P. C., Bosschers, J., Westerweel, J. & van Terwisga, T. J. C. 2015 Dynamics of isolated vortex cavitation. J. Fluid Mech. 778, 288313.
Russo, P. 2014 Physical Basis of X-Ray Imaging. Elsevier.
Sathe, M. J., Thaker, I. H., Strand, T. E. & Joshi, J. B. 2010 Advanced PIV/LIF and shadowgraphy system to visualize flow structure in two-phase bubbly flows. Chem. Engng Sci. 65 (8), 24312442.
Seol, D. G., Bhaumik, T., Bergmann, C. & Socolofsky, S. A. 2007 Particle image velocimetry measurements of the mean flow characteristics in a bubble plume. J. Engng Mech. 133 (6), 665676.
Stutz, B. & Legoupil, S. 2003 X-ray measurements within unsteady cavitation. Exp. Fluids 35 (2), 130138.
Wang, Y., Liu, X., Im, K., Lee, W., Wang, J., Fezzaa, K., Hung, D. L. S. & Winkelman, J. R. 2008 Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry. Nat. Phys. 4 (4), 305309.
Wilhelm, D., Härtel, C. & Kleiser, L. 2003 Computational analysis of the two-dimensional–three-dimensional transition in forward-facing step flow. J. Fluid Mech. 489, 127.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed