Skip to main content
×
Home

The history effect in bubble growth and dissolution. Part 1. Theory

  • Pablo Peñas-López (a1), Miguel A. Parrales (a1), Javier Rodríguez-Rodríguez (a1) and Devaraj van der Meer (a2)
Abstract

The term ‘history effect’ refers to the contribution of any past mass transfer events between a gas bubble and its liquid surroundings towards the current diffusion-driven growth or dissolution dynamics of that same bubble. The history effect arises from the (non-instantaneous) development of the dissolved gas concentration boundary layer in the liquid in response to changes in the concentration at the bubble interface caused, for instance, by variations of the ambient pressure in time. Essentially, the history effect amounts to the acknowledgement that at any given time the mass flux across the bubble is conditioned by the preceding time history of the concentration at the bubble boundary. Considering the canonical problem of an isolated spherical bubble at rest, we show that the contribution of the history effect in the current interfacial concentration gradient is fully contained within a memory integral of the interface concentration. Retaining this integral term, we formulate a governing differential equation for the bubble dynamics, analogous to the well-known Epstein–Plesset solution. Our equation does not make use of the quasi-static radius approximation. An analytical solution is presented for the case of multiple step-like jumps in pressure. The nature and relevance of the history effect is then assessed through illustrative examples. Finally, we investigate the role of the history effect in rectified diffusion for a bubble that pulsates under harmonic pressure forcing in the non-inertial, isothermal regime.

Copyright
Corresponding author
Email address for correspondence: papenasl@ing.uc3m.es
References
Hide All
Barker G. S., Jefferson B. & Judd S. J. 2002 The control of bubble size in carbonated beverages. Chem. Engng Sci. 57 (4), 565573.
Birkhoff G., Margulies R. S. & Horning W. A. 1958 Spherical bubble growth. Phys. Fluids 1 (3), 201204.
Crum L. A. & Hansen G. M. 1982 Generalized equations for rectified diffusion. J. Acoust. Soc. Am. 72, 15861592.
Crum L. A. & Mao Y. 1996 Acoustically enhanced bubble growth at low frequencies and its implications for human diver and marine mammal safety. J. Acoust. Soc. Am. 99, 28982907.
Duda J. L. & Vrentas J. S. 1969 Mathematical analysis of bubble dissolution. AIChE J. 15 (3), 351356.
Eller A. & Flynn H. G. 1965 Rectified diffusion during nonlinear pulsations of cavitation bubbles. J. Acoust. Soc. Am. 37 (3), 493503.
Enríquez O. R., Hummelink C., Bruggert G.-W., Lohse D., Prosperetti A., van der Meer D. & Sun C. 2013 Growing bubbles in a slightly supersaturated liquid solution. Rev. Sci. Instrum. 84 (6), 065111.
Enríquez O. R., Sun C., Lohse D., Prosperetti A. & van der Meer D. 2014 The quasi-static growth of CO2 bubbles. J. Fluid Mech. 741, R1.
Epstein P. S. & Plesset M. S. 1950 On the stability of gas bubbles in liquid–gas solutions. J. Chem. Phys. 18 (11), 15051509.
Fuster D. & Montel F. 2015 Mass transfer effects on linear wave propagation in diluted bubbly liquids. J. Fluid Mech. 779, 598621.
Fyrillas M. M. & Szeri A. J. 1994 Dissolution or growth of soluble spherical oscillating bubbles. J. Fluid Mech. 277, 381407.
Houser D. S., Howard R. & Ridgway S. 2001 Can diving-induced tissue nitrogen supersaturation increase the chance of acoustically driven bubble growth in marine mammals? J. Theor. Biol. 213, 183195.
Hsieh D. Y. & Plesset M. S. 1961 Theory of rectified diffusion of mass into gas bubbles. J. Acoust. Soc. Am. 33 (2), 206215.
Ichihara M. & Brodsky E. E. 2006 A limit on the effect of rectified diffusion in volcanic systems. Geophys. Res. Lett. 33 (2), L02316.
Ilinskii Y. A., Wilson P. S. & Hamilton M. F. 2008 Bubble growth by rectified diffusion at high gas supersaturation levels. J. Acoust. Soc. Am. 124 (4), 19501955.
Jones O. C. & Zuber N. 1978 Bubble growth in variable pressure fields. Trans. ASME J. Heat Transfer 100 (3), 453459.
Kapodistrias G. & Dahl P. H. 2012 Scattering measurements from a dissolving bubble. J. Acoust. Soc. Am. 131 (6), 42434251.
Landau L. D. & Lifshitz E. M. 1987 Viscous fluids. In Fluid Mechanics, 2nd edn, chap. 2, pp. 8388. Pergamon.
Louisnard O. & Gomez F. 2003 Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids. Phys. Rev. E 67, 036610.
Magnaudet J. & Legendre D. 1998 The viscous drag force on a spherical bubble with a time-dependent radius. Phys. Fluids 10, 550554.
Marzella L. & Yin A. 1994 Role of extravascular gas bubbles in spinal cord injury induced by decompression sickness in the rat. Exp. Mol. Pathol. 61 (1), 1623.
Payvar P. 1987 Mass transfer-controlled bubble growth during rapid decompression of a liquid. Intl J. Heat Mass Transfer 30 (4), 699706.
Peñas López P., Parrales M. A. & Rodríguez-Rodríguez J. 2015 Dissolution of a spherical cap bubble adhered to a flat surface in air-saturated water. J. Fluid Mech. 775, 5376.
Plesset M. S. & Zwick S. A. 1954 The growth of vapor bubbles in superheated liquids. J. Appl. Phys. 25 (4), 493500.
Prosperetti A. 1977 Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids. J. Acoust. Soc. Am. 61, 1727.
Rosner D. E. & Epstein M. 1972 Effects of interface kinetics, capillarity and solute diffusion on bubble growth rates in highly supersaturated liquids. Chem. Engng Sci. 27 (1), 6988.
Safar M. H. 1968 Comment on papers concerning rectified diffusion of cavitation bubbles. J. Acoust. Soc. Am. 43 (5), 11881189.
Scriven L. E. 1959 On the dynamics of phase growth. Chem. Engng Sci. 10 (1), 113.
Shim S., Wan J., Hilgenfeldt S., Panchal P. D. & Stone H. A. 2014 Dissolution without disappearing: multicomponent gas exchange for CO2 bubbles in a microfluidic channel. Lab on a Chip 14, 24282436.
Stepanyants Y. A. & Yeoh G. H. 2009 Particle and bubble dynamics in a creeping flow. Eur. J. Mech. (B/Fluids) 28 (5), 619629.
Szekely J. & Martins G. P. 1971 Non-equilibrium effects in the growth of spherical gas bubbles due to solute diffusion. Chem. Engng Sci. 26 (1), 147159.
Tao L. N. 1978 Dynamics of growth or dissolution of a gas bubble. J. Chem. Phys. 69, 41894194.
Theofanous T., Biasi L., Isbin H. S. & Fauske H. 1969 A theoretical study on bubble growth in constant and time-dependent pressure fields. Chem. Engng Sci. 24 (5), 885897.
Tisato N., Quintal B., Chapman S., Podladchikov Y. & Burg J.-P. 2015 Bubbles attenuate elastic waves at seismic frequencies: first experimental evidence. Geophys. Res. Lett. 42 (10), 38803887.
Webb I. R., Arora M., Roy R. A., Payne S. J. & Coussios C.-C. 2010 Dynamics of gas bubbles in time-variant temperature fields. J. Fluid Mech. 663, 209232.
Weinberg M. C. & Subramanian R. S. 1980 Dissolution of multicomponent bubbles. J. Am. Ceram. Soc. 63 (9‐10), 527531.
Zhang Y. & Li S. 2014a A general approach for rectified mass diffusion of gas bubbles in liquids under acoustic excitation. Trans. ASME J. Heat Transfer 136, 042001.
Zhang Y. & Li S. 2014b Mass transfer during radial oscillations of gas bubbles in viscoelastic mediums under acoustic excitation. Intl J. Heat Mass Transfer 69, 106116.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 12
Total number of PDF views: 207 *
Loading metrics...

Abstract views

Total abstract views: 435 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th November 2017. This data will be updated every 24 hours.