Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T03:50:32.372Z Has data issue: false hasContentIssue false

The history force on a small particle in a linearly stratified fluid

Published online by Cambridge University Press:  15 May 2014

Fabien Candelier*
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343 5 rue Enrico Fermi, 13 013 Marseille CEDEX 13, France
Rabah Mehaddi
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343 5 rue Enrico Fermi, 13 013 Marseille CEDEX 13, France
Olivier Vauquelin
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343 5 rue Enrico Fermi, 13 013 Marseille CEDEX 13, France
*
Email address for correspondence: fabien.candelier@univ-amu.fr

Abstract

The hydrodynamic force experienced by a small spherical particle undergoing an arbitrary time-dependent motion in a weakly density-stratified fluid is investigated theoretically. The study is carried out under the Oberbeck–Boussinesq approximation and in the limit of small Reynolds and small Péclet numbers. The force acting on the particle is obtained by using matched-asymptotic expansions. In this approach, the small parameter is given by $a/\ell $, where $a$ is the particle radius and $\ell $ is the stratification length, as defined by Ardekani & Stocker (Phys. Rev. Lett., vol. 105, 2010, article 084502), which depends on the Brunt–Väisälä frequency, on the fluid kinematic viscosity and on the thermal or the concentration diffusivity (depending on the case considered). The matching procedure used here, which is based on series expansions of generalized functions, slightly differs from that generally used in similar problems. In addition to the classical Stokes drag, it is found that the particle experiences a memory force given by two convolution products, one of which involves, as usual, the particle acceleration and the other one, the particle velocity. Owing to the stratification, the transient behaviour of this memory force, in response to an abrupt motion, consists of an initial fast decrease followed by a damped oscillation with an angular frequency corresponding to the Brunt–Väisälä frequency. The perturbation force eventually tends to a constant which provides us with correction terms that should be added to the Stokes drag to accurately predict the settling time of a particle in a diffusive stratified fluid.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions. New Dover.Google Scholar
Appel, W. 2002 Mathématique Pour la Physique et les Physiciens, p. 189 and p. 342. H & K Editions.Google Scholar
Ardekani, A. M. & Stocker, R. 2010 Stratlets: low Reynolds number point-force solutions in a stratified fluid. Phys. Rev. Lett. 105, 084502.Google Scholar
Basset, A. B. 1888 Treatise on Hydrodynamics, vol. 2, pp. 285297. Deighton Bell.Google Scholar
Boussinesq, J. 1885 Sur la résistance qu’oppose un fluide indéfini au repos sans pesanteur au mouvement varié d’une sphère solide qu’il mouille sur toute sa surface quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables. C. R. Acad. Sci. Paris 100, 935937.Google Scholar
Candelier, F., Mehaddi, R. & Vauquelin, O.2013 Note on the method of matched-asymptotic expansions for determining the force acting on a particle.http://hal.archives-ouvertes.fr/hal-00847339 (or arXiv:1307.6314).Google Scholar
Chadwick, R. S. & Zvirin, Y. 1974 Slow viscous flow of an incompressible stratified fluid past a sphere. J. Fluid Mech. 66 (2), 377383.Google Scholar
Childress, S. 1964 The slow motion of a sphere in a rotating, viscous fluid. J. Fluid Mech. 20, 305314.Google Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Hydrodynamics. Kluwer.CrossRefGoogle Scholar
Landau, L. & Lifchitz, E. 1989 Physique Théorique, Tome 6, Mécanique des Fluides, pp. 127129. Mir.Google Scholar
Lawrence, C. J. & Mei, R. 1995 Long time behaviour of the drag on a body in impulsive motion. J. Fluid Mech. 283, 307327.Google Scholar
Lovalenti, P. M. & Brady, J. F. 1993 The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds numbers. J. Fluid Mech. 256, 561605.Google Scholar
MacIntyre, S., Alldredge, A. L. & Gotschalke, C. C. 1995 Accumulation of marine snow at density discontinuities in the water column. Limnol. Oceanogr. 40, 449468.Google Scholar
Ockendon, J. R. 1968 The unsteady motion of a small sphere in a viscous liquid. J. Fluid Mech. 34 (2), 229239; and corrigendum (1968).Google Scholar
Saffman, P. G. 1965 The lift on a small sphere in a viscous flow. J. Fluid Mech. 22 (2), 385400; and corrigendum (1968) J. Fluid Mech. 31 (3), 624.Google Scholar
Sano, T. 1981 Unsteady flow past a sphere at low Reynolds number. J. Fluid Mech. 112, 433441.Google Scholar
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.Google Scholar
Yick, K. Y., Torres, C. R., Peacock, T. & Stocker, R. 2009 Enhanced drag of a sphere settling in a stratified fluid at small Reynolds numbers. J. Fluid Mech. 632, 4968.Google Scholar
Zvirin, Y. & Chadwick, R. S. 1975 Settling of an axially symmetric body in a viscous stratified fluid. Intl J. Multiphase Flow 1, 743752.CrossRefGoogle Scholar