Skip to main content Accessibility help
×
Home

Hovering in oscillatory flows

  • Yangyang Huang (a1), Monika Nitsche (a2) and Eva Kanso (a1)

Abstract

We investigate the hovering dynamics of rigid bodies with up-down asymmetry placed in oscillating background flows. Recent experiments on inanimate pyramid-shaped objects in oscillating flows with zero mean component demonstrate that the resulting aerodynamic forces are sufficient to keep the object aloft. The mechanisms responsible for this lift production are fundamentally unsteady and depend on the shed vorticity. Here, we consider a model system of a two-dimensional flyer and compute the unsteady, two-way coupling between the flyer and the surrounding fluid in the context of the vortex sheet model. We examine in detail the flow properties (frequency and speed) required for hovering and their dependence on the flyer’s characteristics (mass and geometry). We find that, at low oscillation frequencies, a flyer of a fixed mass and shape requires a constant amount of flow acceleration to hover, irrespective of the frequency and speed of the oscillating flow. Meanwhile, at high oscillation frequencies, the flow speed required to hover is constant. In either case, the aerodynamic requirements to hover (flow acceleration or flow speed) are an intrinsic property of the flyer itself. This physical insight could potentially have significant implications on the design of unmanned air vehicles as well as on understanding active hovering of live organisms that can manipulate their flapping motion to favour a larger oscillation amplitude or frequency.

Copyright

Corresponding author

Email address for correspondence: kanso@usc.edu

References

Hide All
Alben, S. 2009 Simulating the dynamics of flexible bodies and vortex sheets. J. Comput. Phys. 228 (7), 25872603.
Alben, S. 2010 Flexible sheets falling in an inviscid fluid. Phys. Fluids 22 (6), 061901.
Alben, S. & Shelley, M. J. 2008 Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys. Rev. Lett. 100, 074301.
Andersen, A., Pesavento, U. & Wang, Z. J. 2005a Analysis of transitions between fluttering, tumbling and steady descent of falling cards. J. Fluid Mech. 541, 91104.
Andersen, A., Pesavento, U. & Wang, Z. J. 2005b Unsteady aerodynamics of fluttering and tumbling plates. J. Fluid Mech. 541, 6590.
Birch, J. M. & Dickinson, M. H. 2003 The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight. J. Expl Biol. 206 (13), 22572272.
Childress, S., Vandenberghe, N. & Zhang, J. 2006 Hovering of a passive body in an oscillating airflow. Phys. Fluids 18 (11), 117103.
Dickinson, M. H., Lehmann, F. & Sane, S. P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284 (5422), 19541960.
Ellington, C. P. 1984 The aerodynamics of hovering insect flight. iv: aeorodynamic mechanisms. Phil. Trans. R. Soc. B 305 (1122), 79113.
Ellington, C. P., van den Berg, C., Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge vortices in insect flight. Nature 384 (6610), 626630.
Huang, Y., Nitsche, M. & Kanso, E. 2015 Stability versus maneuverability in hovering flight. Phys. Fluids 27 (6), 061706.
Jing, F., Kanso, E. & Newton, P. K. 2010 Viscous evolution of point vortex equilibria: the collinear state. Phys. Fluids 22 (12), 123102.
Jones, M. A. 2003 The separated flow of an inviscid fluid around a moving flat plate. J. Fluid Mech. 496, 405441.
Jones, M. A. & Shelley, M. J. 2005 Falling cards. J. Fluid Mech. 540, 393425.
Kanso, E. 2009 Swimming due to transverse shape deformations. J. Fluid Mech. 631, 127148.
Krasny, R. 1986 Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65 (2), 292313.
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.
Liu, B., Ristroph, L., Weathers, A., Childress, S. & Zhang, J. 2012 Intrinsic stability of a body hovering in an oscillating airflow. Phys. Rev. Lett. 108, 068103.
Michelin, S. & Smith, S. G. L. 2009 An unsteady point vortex method for coupled fluid–solid problems. Theor. Comput. Fluid Dyn. 23 (2), 127153.
Minotti, F. O. 2002 Unsteady two-dimensional theory of a flapping wing. Phys. Rev. E 66, 051907.
Nitsche, M. & Krasny, R. 1994 A numerical study of vortex ring formation at the edge of a circular tube. J. Fluid Mech. 276, 139161.
Pennycuick, C. J. 1990 Predicting wingbeat frequency and wavelength of birds. J. Expl Biol. 150 (1), 171185.
Ramamurti, R. & Sandberg, W. C. 2002 A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J. Expl Biol. 205 (10), 15071518.
Sane, S. P. 2003 The aerodynamics of insect flight. J. Exp. Biol. 206 (23), 41914208.
Shukla, R. K. & Eldredge, J. D. 2007 An inviscid model for vortex shedding from a deforming body. Theor. Comput. Fluid Dyn. 21 (5), 343368.
Spedding, G. R., Rosén, M. & Hedenström, A. 2003 A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. J. Exp. Biol. 206 (14), 23132344.
Sun, M. & Lan, S. L. 2004 A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering. J. Exp. Biol. 207 (11), 18871901.
Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Nudds, R. L. & Bomphrey, R. J. 2004 Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J. Exp. Biol. 207 (24), 42994323.
Wang, Z. J. 2005 Dissecting insect flight. Annu. Rev. Fluid Mech. 37 (1), 183210.
Warrick, D. R., Tobalske, B. W. & Powers, D. R. 2005 Aerodynamics of the hovering hummingbird. Nature 435 (7045), 10941097.
Weathers, A., Folie, B., Liu, B., Childress, S. & Zhang, J. 2010 Hovering of a rigid pyramid in an oscillatory airflow. J. Fluid Mech. 650, 415425.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed