Skip to main content
×
×
Home

A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants

  • Haihu Liu (a1), Yan Ba (a2), Lei Wu (a3), Zhen Li (a1), Guang Xi (a1) and Yonghao Zhang (a3)...
Abstract

Droplet dynamics in microfluidic applications is significantly influenced by surfactants. It remains a research challenge to model and simulate droplet behaviour including deformation, breakup and coalescence, especially in the confined microfluidic environment. Here, we propose a hybrid method to simulate interfacial flows with insoluble surfactants. The immiscible two-phase flow is solved by an improved lattice Boltzmann colour-gradient model which incorporates a Marangoni stress resulting from non-uniform interfacial tension, while the convection–diffusion equation which describes the evolution of surfactant concentration in the entire fluid domain is solved by a finite difference method. The lattice Boltzmann and finite difference simulations are coupled through an equation of state, which describes how surfactant concentration influences interfacial tension. Our method is first validated for the surfactant-laden droplet deformation in a three-dimensional (3D) extensional flow and a 2D shear flow, and then applied to investigate the effect of surfactants on droplet dynamics in a 3D shear flow. Numerical results show that, at low capillary numbers, surfactants increase droplet deformation, due to reduced interfacial tension by the average surfactant concentration, and non-uniform effects from non-uniform capillary pressure and Marangoni stresses. The role of surfactants on the critical capillary number ( $Ca_{cr}$ ) of droplet breakup is investigated for various confinements (defined as the ratio of droplet diameter to wall separation) and Reynolds numbers. For clean droplets, $Ca_{cr}$ first decreases and then increases with confinement, and the minimum value of $Ca_{cr}$ is reached at a confinement of 0.5; for surfactant-laden droplets, $Ca_{cr}$ exhibits the same variation in trend for confinements lower than 0.7, but, for higher confinements, $Ca_{cr}$ is almost a constant. The presence of surfactants decreases $Ca_{cr}$ for each confinement, and the decrease is also attributed to the reduction in average interfacial tension and non-uniform effects, which are found to prevent droplet breakup at low confinements but promote breakup at high confinements. In either clean or surfactant-laden cases, $Ca_{cr}$ first remains almost unchanged and then decreases with increasing Reynolds number, and a higher confinement or Reynolds number favours ternary breakup. Finally, we study the collision of two equal-sized droplets in a shear flow in both surfactant-free and surfactant-contaminated systems with the same effective capillary numbers. It is identified that the non-uniform effects in the near-contact interfacial region immobilize the interfaces when two droplets are approaching each other and thus inhibit their coalescence.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence: haihu.liu@xjtu.edu.cn
References
Hide All
Alke, A. & Bothe, D. 2009 3D numerical modeling of soluble surfactant at fluidic interfaces based on the volume-of-fluid method. Fluid Dyn. Mater. Process. 5 (4), 345372.
Ba, Y., Liu, H., Li, Q., Kang, Q. & Sun, J. 2016 Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio. Phys. Rev. E 94, 023310.
Ba, Y., Liu, H., Sun, J. & Zheng, R. 2013 Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis. Phys. Rev. E 88 (4), 043306.
Baret, J.-C. 2012 Surfactants in droplet-based microfluidics. Lab on a Chip 12 (3), 422433.
Bazhlekov, I. B., Anderson, P. D. & Meijer, H. E. 2006 Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. J. Colloid Interface Sci. 298 (1), 369394.
Benzi, R., Biferale, L., Sbragaglia, M., Succi, S. & Toschi, F. 2006 Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys. Rev. E 74, 021509.
Ceniceros, H. D. 2003 The effects of surfactants on the formation and evolution of capillary waves. Phys. Fluids 15 (1), 245256.
Chen, Y., Liu, G.-T., Xu, J.-H. & Luo, G.-S. 2015 The dynamic mass transfer of surfactants upon droplet formation in coaxial microfluidic devices. Chem. Engng Sci. 132, 18.
Cristini, V. & Tan, Y.-C. 2004 Theory and numerical simulation of droplet dynamics in complex flows: a review. Lab on a Chip 4, 257264.
Dai, B. & Leal, L. G. 2008 The mechanism of surfactant effects on drop coalescence. Phys. Fluids 20, 040802.
Deng, S., Ito, K. & Li, Z. 2003 Three-dimensional elliptic solvers for interface problems and applications. J. Comput. Phys. 184 (1), 215243.
Eggleton, C. D., Pawar, Y. P. & Stebe, K. J. 1999 Insoluble surfactants on a drop in an extensional flow: a generalization of the stagnated surface limit to deforming interfaces. J. Fluid Mech. 385, 7999.
Eggleton, C. D., Tsai, T.-M. & Stebe, K. J. 2001 Tip streaming from a drop in the presence of surfactants. Phys. Rev. Lett. 87 (4), 048302.
Falcucci, G., Jannelli, E., Ubertini, S. & Succi, S. 2013 Direct numerical evidence of stress-induced cavitation. J. Fluid Mech. 728, 362375.
Falcucci, G., Ubertini, S., Bella, G., Maio, A. D. & Palpacelli, S. 2010a Lattice Boltzmann modeling of diesel spray formation and break-up. SAE Intl J. Fuels Lubr. 3 (1), 582593.
Falcucci, G., Ubertini, S. & Succi, S. 2010b Lattice Boltzmann simulations of phase-separating flows at large density ratios: the case of doubly-attractive pseudo-potentials. Soft Matt. 6, 43574365.
Farhat, H., Celiker, F., Singh, T. & Lee, J. S. 2011 A hybrid lattice Boltzmann model for surfactant-covered droplets. Soft Matt. 7 (5), 19681985.
Feigl, K., Megias-Alguacil, D., Fischer, P. & Windhab, E. J. 2007 Simulation and experiments of droplet deformation and orientation in simple shear flow with surfactants. Chem. Engng Sci. 62 (12), 32423258.
Guido, S. & Greco, F. 2004 Dynamics of a liquid drop in a flowing immiscible liquid. Rheol. Rev. 2004, 99142.
Gunstensen, A. K., Rothman, D. H., Zaleski, S. & Zanetti, G. 1991 Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43 (8), 43204327.
Guo, Z.-L., Zheng, C.-G. & Shi, B.-C. 2002b Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 11 (4), 366.
Guo, Z., Zheng, C. & Shi, B. 2002a Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 110126.
Gupta, A. & Kumar, R. 2010 Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluid Nanofluid 8, 799812.
Halliday, I., Hollis, A. P. & Care, C. M. 2007 Lattice Boltzmann algorithm for continuum multicomponent flow. Phys. Rev. E 76, 026708.
Halliday, I., Law, R., Care, C. M. & Hollis, A. 2006 Improved simulation of drop dynamics in a shear flow at low Reynolds and capillary number. Phys. Rev. E 73 (5), 056708.
He, X. & Doolen, G. D. 2002 Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J. Stat. Phys. 107 (1), 309328.
Hu, Y. T., Pine, D. J. & Leal, L. G. 2000 Drop deformation, breakup, and coalescence with compatibilizer. Phys. Fluids 12 (3), 484489.
James, A. J. & Lowengrub, J. 2004 A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys. 201 (2), 685722.
Janssen, P. J. A., Vananroye, A., Van Puyvelde, P., Moldenaers, P. & Anderson, P. D. 2010 Generalized behavior of the breakup of viscous drops in confinements. J. Rheol. 54 (5), 10471060.
Jiang, G.-S. & Shu, C.-W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202228.
Jin, F. & Stebe, K. J. 2007 The effects of a diffusion controlled surfactant on a viscous drop injected into a viscous medium. Phys. Fluids 19 (11), 112103.
Johnson, R. A. & Borhan, A. 2000 Stability of the shape of a surfactant-laden drop translating at low Reynolds number. Phys. Fluids 12 (4), 773784.
Josephides, D. N. & Sajjadi, S. 2015 Increased drop formation frequency via reduction of surfactant interactions in flow-focusing microfluidic devices. Langmuir 31 (3), 12181224.
Kobayashi, I., Mukataka, S. & Nakajima, M. 2005 Effects of type and physical properties of oil phase on oil-in-water emulsion droplet formation in straight-through microchannel emulsification, experimental and CFD studies. Langmuir 21 (13), 57225730.
Kobayashi, I., Nakajima, M., Chun, K., Kikuchi, Y. & Fujita, H. 2002 Silicon array of elongated through-holes for monodisperse emulsion droplets. AIChE J. 48 (8), 16391644.
Kobayashi, I., Nakajima, M. & Mukataka, S. 2003 Preparation characteristics of oil-in-water emulsions using differently charged surfactants in straight-through microchannel emulsification. Colloids Surf. A 229 (1), 3341.
Kobayashi, I., Takano, T., Maeda, R., Wada, Y., Uemura, K. & Nakajima, M. 2008 Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size. Microfluid Nanofluid 4 (3), 167177.
Krebs, T., Schroën, K. & Boom, R. 2012 Coalescence dynamics of surfactant-stabilized emulsions studied with microfluidics. Soft Matt. 8, 1065010657.
Kruijt-Stegeman, Y. W., van de Vosse, F. N. & Meijer, H. E. H. 2004 Droplet behavior in the presence of insoluble surfactants. Phys. Fluids 16 (8), 27852796.
Kusumaatmaja, H., Hemingway, E. J. & Fielding, S. M. 2016 Moving contact line dynamics: from diffuse to sharp interfaces. J. Fluid Mech. 788, 209227.
Lai, M.-C., Tseng, Y.-H. & Huang, H. 2008 An immersed boundary method for interfacial flows with insoluble surfactant. J. Comput. Phys. 227 (15), 72797293.
Lai, M. C., Tseng, Y. H. & Huang, H. 2010 Numerical simulation of moving contact lines with surfactant by immersed boundary method. Commun. Comput. Phys. 8 (4), 735757.
Latva-Kokko, M. & Rothman, D. H. 2005 Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids. Phys. Rev. E 71 (5), 056702.
Link, D. R., Anna, S. L., Weitz, D. A. & Stone, H. A. 2004 Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92, 054503.
Lishchuk, S. V., Care, C. M. & Halliday, I. 2003 Lattice Boltzmann algorithm for surface tension with greatly reduced microcurrents. Phys. Rev. E 67 (3), 036701.
Liu, H., Ju, Y., Wang, N., Xi, G. & Zhang, Y. 2015 Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference. Phys. Rev. E 92, 033306.
Liu, H., Valocchi, A. J. & Kang, Q. 2012a Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Phys. Rev. E 85 (4), 046309.
Liu, H., Valocci, A. J., Werth, C., Kang, Q. & Oostrom, M. 2014 Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model. Adv. Water Resour. 73, 144158.
Liu, H. & Zhang, Y. 2010 Phase-field modeling droplet dynamics with soluble surfactants. J. Comput. Phys. 229 (24), 91669187.
Liu, H. & Zhang, Y. 2015 Modeling thermocapillary migration of a microfluidic droplet on a solid surface. J. Comput. Phys. 280, 3753.
Liu, H., Zhang, Y. & Valocchi, A. J. 2012b Modeling and simulation of thermocapillary flows using lattice Boltzmann method. J. Comput. Phys. 231 (12), 44334453.
Maffettone, P. L. & Minale, M. 1998 Equation of change for ellipsoidal drops in viscous flow. J. Non-Newtonian Fluid Mech. 78 (2), 227241.
Magaletti, F., Picano, F., Chinappi, M., Marino, L. & Casciola, C. M. 2013 The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids. J. Fluid Mech. 714, 95126.
Mei, R., Yu, D., Shyy, W. & Luo, L.-S. 2002 Force evaluation in the lattice Boltzmann method involving curved geometry. Phys. Rev. E 65, 041203.
Milliken, W. J. & Leal, L. G. 1994 The influence of surfactant on the deformation and breakup of a viscous drop: the effect of surfactant solubility. J. Colloid Interface Sci. 166 (2), 275285.
Minale, M. 2010 Models for the deformation of a single ellipsoidal drop: a review. Rheol. Acta 49 (8), 789806.
Montessori, A., Falcucci, G., Rocca, M. L., Ansumali, S. & Succi, S. 2015 Three-dimensional lattice pseudo-potentials for multiphase flow simulations at high density ratios. J. Stat. Phys. 161 (6), 14041419.
Muradoglu, M. & Tryggvason, G. 2008 A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227 (4), 22382262.
Pathak, J. A. & Migler, K. B. 2003 Droplet-string deformation and stability during microconfined shear flow. Langmuir 19 (21), 86678674.
Pooley, C. M., Kusumaatmaja, H. & Yeomans, J. M. 2008 Contact line dynamics in binary lattice Boltzmann simulations. Phys. Rev. E 78, 056709.
Puyvelde, P. V., Vananroye, A., Cardinaels, R. & Moldenaers, P. 2008 Review on morphology development of immiscible blends in confined shear flow. Polymer 49 (25), 53635372.
Renardy, Y. 2007 The effects of confinement and inertia on the production of droplets. Rheol. Acta 46 (4), 521529.
Renardy, Y. Y. & Cristini, V. 2001 Effect of inertia on drop breakup under shear. Phys. Fluids 13 (1), 713.
Riaud, A., Zhao, S., Wang, K., Cheng, Y. & Luo, G. 2014 Lattice-Boltzmann method for the simulation of multiphase mass transfer and reaction of dilute species. Phys. Rev. E 89, 053308.
Saad, Y. 2003 Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics.
Sbragaglia, M., Benzi, R., Biferale, L., Succi, S., Sugiyama, K. & Toschi, F. 2007 Generalized lattice Boltzmann method with multirange pseudopotential. Phys. Rev. E 75, 026702.
Seemann, R., Brinkmann, M., Pfohl, T. & Herminghaus, S. 2011 Droplet based microfluidics. Rep. Prog. Phys. 75 (1), 016601.
Shan, X. & Chen, H. 1993 Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47 (3), 18151820.
Shapira, M. & Haber, S. 1990 Low Reynolds number motion of a droplet in shear flow including wall effects. Intl J. Multiphase Flow 16 (2), 305321.
Shardt, O., Derksen, J. J. & Mitra, S. K. 2013 Simulations of droplet coalescence in simple shear flow. Langmuir 29 (21), 62016212.
Sibillo, V., Pasquariello, G., Simeone, M., Cristini, V. & Guido, S. 2006 Drop deformation in microconfined shear flow. Phys. Rev. Lett. 97 (5), 054502.
Sjöblom, J. 2005 Emulsions and Emulsion Stability. Surfactant Science Series, vol. 132. CRC Press.
van der Sman, R. G. M. & van der Graaf, S. 2008 Emulsion droplet deformation and breakup with lattice Boltzmann model. Comput. Phys. Commun. 178, 492504.
Stone, H. A. 1990 A simple derivation of the time-dependent convective–diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2 (1), 111112.
Stone, H. A. 1994 Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26 (1), 65102.
Stone, H. A. & Leal, L. G. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.
Sui, Y. 2014 Moving towards the cold region or the hot region? Thermocapillary migration of a droplet attached on a horizontal substrate. Phys. Fluids 26, 092102.
Swift, M. R., Osborn, W R. & Yeomans, J. M. 1995 Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 75 (5), 830.
Taylor, G. I. 1934 The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146 (858), 501523.
Teigen, K. E., Li, X., Lowengrub, J., Wang, F. & Voigt, A. 2009 A diffuse-interface approach for modeling transport, diffusion and adsorption/desorption of material quantities on a deformable interface. Commun. Math. Sci. 4 (7), 1009.
Teigen, K. E., Song, P., Lowengrub, J. & Voigt, A. 2011 A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys. 230 (2), 375393.
Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. & Jan, Y.-J. 2001 A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169 (2), 708759.
Vananroye, A., Van Puyvelde, P. & Moldenaers, P. 2007 Effect of confinement on the steady-state behavior of single droplets during shear flow. J. Rheol. 51 (1), 139153.
Van der Graaf, S., Steegmans, M. L. J., Van der Sman, R. G. M., Schroën, C. G. P. H. & Boom, R. M. 2005 Droplet formation in a T-shaped microchannel junction: a model system for membrane emulsification. Colloids Surf. A 266 (1), 106116.
Wang, Y., Shu, C., Huang, H. B. & Teo, C. J. 2015 Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio. J. Comput. Phys. 280, 404423.
Xu, J.-J., Li, Z., Lowengrub, J. & Zhao, H. 2006 A level-set method for interfacial flows with surfactant. J. Comput. Phys. 212 (2), 590616.
Xu, J.-J. & Ren, W. 2014 A level-set method for two-phase flows with moving contact line and insoluble surfactant. J. Comput. Phys. 263, 7190.
Xu, J.-J., Yang, Y. & Lowengrub, J. 2012 A level-set continuum method for two-phase flows with insoluble surfactant. J. Comput. Phys. 231 (17), 58975909.
Xu, J.-J. & Zhao, H.-K. 2003 An Eulerian formulation for solving partial differential equations along a moving interface. J. Sci. Comput. 19 (1–3), 573594.
Zhang, J., Eckmann, D. M. & Ayyaswamy, P. S. 2006 A front tracking method for a deformable intravascular bubble in a tube with soluble surfactant transport. J. Comput. Phys. 214 (1), 366396.
Zhang, T. & Wang, Q. 2010 Cahn–Hilliard vs singular Cahn–Hilliard equations in phase field modeling. Commun. Comput. Phys. 7 (2), 362382.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed