Skip to main content Accessibility help
×
Home

The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number

  • Phillip M. Lovalenti (a1) and John F. Brady (a1)

Abstract

The hydrodynamic force acting on a rigid spherical particle translating with arbitrary time-dependent motion in a time-dependent flowing fluid is calculated to O(Re) for small but finite values of the Reynolds number, Re, based on the particle's slip velocity relative to the uniform flow. The corresponding expression for an arbitrarily shaped rigid particle is evaluated for the case when the timescale of variation of the particle's slip velocity is much greater than the diffusive scale, a2/v, where a is the characteristic particle dimension and v is the kinematic viscosity of the fluid. It is found that the expression for the hydrodynamic force is not simply an additive combination of the results from unsteady Stokes flow and steady Oseen flow and that the temporal decay to steady state for small but finite Re is always faster than the t behaviour of unsteady Stokes flow. For example, when the particle accelerates from rest the temporal approach to steady state scales as t-2.

Copyright

Footnotes

Hide All
With Appendix A by P. M. Lovalenti, J. F. Brady and Howard A. Stone; and Appendix D by E. J. Hinch

Footnotes

References

Hide All
Adrian, R. J. 1991 Particle-imaging techniques for experimental fluid mechanics. Ann. Rev. Fluid Mech. 23, 261304.
Basset, A. B. 1888 A Treatise on Hydrodynamics, vol. 2. Cambridge: Deighton Bell.
Bentwich, M. & Miloh, V. 1978 The unsteady matched Stokes-Oseen solution for the flow past a sphere. J. Fluid Mech. 88, 1732.
Brenner, H. 1961 The Oseen resistance of a particle of arbitrary shape. J. Fluid Mech. 11, 604610.
Brenner, H. & Cox, R. G. 1963 The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. J. Fluid Mech. 17, 561595.
Childress, S. 1964 The slow motion of a sphere in a rotating, viscous fluid. J. Fluid Mech. 20, 305314.
Cox, R. G. 1965 The steady motion of a particle of arbitrary shape at small Reynolds numbers. J. Fluid Mech. 23, 625643.
Cox, R. G. & Brenner, H. 1968 The lateral migration of solid particles in Poiseuille flow – I. Theory. Chem. Engng Sci. 23, 147173.
Gavze, E. 1990 The accelerated motion of rigid bodies in non-steady Stokes flow. Intl J. Multiphase Flow 16, 153166.
Happel, J. & Brenner, H. 1986 Low Reynolds Number Hydrodynamics. Martinus-Nijhoff.
Ho, B. P. & Leal, L. G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65, 365400.
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
Lawrence, C. J. & Weinbaum, S. 1986 The force on an axisymmetric body in linearized, time-dependent motion: a new memory term. J. Fluid Mech. 171, 209218.
Lawrence, C. J. & Weinbaum, S. 1988 The unsteady force on a body at low Reynolds number; the axisymmetric motion of a spheroid. J. Fluid Mech. 189, 463489.
Leal, L.G. 1980 Particle motions in a viscous fluid. Ann. Rev. Fluid Mech. 12, 435476.
Lovalenti, P. M. & Brady, J. F. 1993b The force on a sphere in a uniform flow with small-amplitude oscillations at finite Reynolds number. J. Fluid Mech. 256, 607614.
Lovalenti, P. M. & Brady, J. F. 1993b The force on a bubble, drop, or particle in arbitrary time-dependent motion at small Reynolds number. Phys. Fluids A 5, 21042116.
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.
Maxworthy, T. 1965 Accurate measurements of sphere drag at low Reynolds numbers. J. Fluid Mech. 23, 369372.
Mei, R. & Adrian, R. J. 1992 Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number. J. Fluid Mech. 237, 323341.
Mei, R., Adrian, R. J. & Hanratty, T. J. 1991 Particle dispersion in isotropic turbulence under Stokes drag and Basset force with gravitational settling. J. Fluid Mech. 225, 481495.
Mei, R., Lawrence, C.J. & Adrian, R. J. 1991 Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity. J. Fluid Mech. 233, 613631.
Ockendon, J. R. 1968 The unsteady motion of a small sphere in a viscous liquid. J. Fluid Mech. 34, 229239.
Oseen, C.W. 1910 Über die Stokes'sche Formel und über eine verwandte Aufgabe in der Hydrodynamik. Ark. f. Mat. Astr. och Fys. 6 no. 29.
Oseen, C.W. 1913 Über den Gültigkeitsbereich der Stokesschen Widerstandsformel. Ark. f. Mat. Astr. och Fys. 9 no. 16.
Pozrikidis, C. 1989 A study of linearized oscillatory flow past particles by the boundary-integral method. J. Fluid Mech. 202, 1741.
Proudman, I. & Pearson, J. R. A. 1957 Expansion at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2, 237262.
Reeks, M.W. & McKee, S. 1984 The dispersive effects of Basset history forces on the particle motion in a turbulent flow. Phys. Fluids 27, 15731582.
Rubinow, S. I. & Keller, J. B. 1961 The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11, 447459.
Saffman, P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400.
Sano, T. 1981 Unsteady flow past a sphere at low Reynolds number. J. Fluid Mech. 112, 433441.
Stone, H. A. & Brady, J. F. 1993 Inertial effects on the rheology of a suspension and on the motion of isolated rigid particles. J. Fluid Mech. (to be submitted).
Williams, W. E. 1966 A note on the slow vibrations in a viscous fluid. J. Fluid Mech. 25, 589590.
Young, J. B. & Hanratty, T.J. 1991 Optical studies on the turbulent motion of solid particles in pipe flow. J. Fluid Mech. 231, 665688.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number

  • Phillip M. Lovalenti (a1) and John F. Brady (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed