Skip to main content
×
×
Home

The hydrodynamics of water-walking arthropods

  • DAVID L. HU (a1) and JOHN W. M. BUSH (a1)
Abstract

We present the results of a combined experimental and theoretical investigation of the dynamics of water-walking insects and spiders. Using high-speed videography, we describe their numerous gaits, some analogous to those of their terrestrial counterparts, others specialized for life at the interface. The critical role of the rough surface of these water walkers in both floatation and propulsion is demonstrated. Their waxy, hairy surface ensures that their legs remain in a water-repellent state, that the bulk of their leg is not wetted, but rather contact with the water arises exclusively through individual hairs. Maintaining this water-repellent state requires that the speed of their driving legs does not exceed a critical wetting speed. Flow visualization reveals that the wakes of most water walkers are characterized by a series of coherent subsurface vortices shed by the driving stroke. A theoretical framework is developed in order to describe the propulsion in terms of the transfer of forces and momentum between the creature and its environment. The application of the conservation of momentum to biolocomotion at the interface confirms that the propulsion of water walkers may be rationalized in terms of the subsurface flows generated by their driving stroke. The two principal modes of propulsion available to small water walkers are elucidated. At driving leg speeds in excess of the capillary wave speed, macroscopic curvature forces are generated by deforming the meniscus, and the surface behaves effectively as a trampoline. For slower speeds, the driving legs need not substantially deform the surface but may instead simply brush it: the resulting contact or viscous forces acting on the leg hairs crossing the interface serve to propel the creature forward.

Copyright
Corresponding author
Email address for correspondence: bush@math.mit.edu
Footnotes
Hide All

Present address: Departments of Mechanical Engineering and Biology, Georgia Institute of Technology, Atlanta, GA 30318, USA

Footnotes
References
Hide All
Aldrovandi, U. 1618 Historiam naturalem de Animalibus Insectis Libri Septem. Typis Pauli Jacobi.
Alexander, R. M. 2003 Principles of Animal Locomotion. Princeton University Press.
Altendorfer, R., Moore, N., Komsuoglu, H., Buehler, M., Brown, H. B. Jr., McMordie, D., Saranli, U., Full, R. & Koditschek, D. E. 2001 RHex: a biologically inspired hexapod runner. J. Auton. Robots 11, 207213.
Andersen, N. M. 1976 A comparative study of locomotion on the water surface in semiaquatic bugs (insects, Hemiptera, Gerromorpha). Vidensk. Meddr. Dansk. Naturh. Foren. 139, 337396.
Andersen, N. M. 1977 Fine structure of the body hair layers and morphology of the spiracles of semiaquatic bugs in relation to life on the water surface. Vidensk. Meddr. Dansk. Naturh. Foren. 140, 737.
Bartolo, D., Bouamrirene, F., Verneuil, E., Beguin, A., Silberzan, P. & Moulinet, S. 2006 Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. Europhys. Lett. 74, 299305.
Baudoin, R. 1955 La physico-chimie des surfaces dans la vie des Arthropodes aeriens des miroirs d'eau, des rivages marins et lacustres et de la zone intercotidale. Bull. Biol. Fr. Belg. 89, 16164.
Bowdan, E. 1978 Walking and rowing in the water strider, Gerris remigis. J. Compar. Physiol. 123, 4349.
Brocher, F. 1910 Les phénomènes capillaires, leur importance dans la biologie aquatique. Ann. Biol. Lacustre 4, 89139.
Bühler, O. 2007 Impulsive fluid forcing and water strider locomotion. J. Fluid. Mech. 573, 211236.
Bush, J. W. M. & Hu, D. L. 2004 Walking on water. In Multimedia Fluid Mechanics CD (ed. Homsy, G. M.). Cambridge University Press.
Bush, J. W. M. & Hu, D. L. 2006 Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339369.
Bush, J. W. M., Hu, D. L. & Prakash, M. 2008 The integument of water-walking arthropods: form and function. Adv. Insect Physiol. 34, 117192.
Cassie, A. B. D. & Baxter, S. 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551.
Chepelianskii, A. D., Chevy, F. & Raphäel, E. 2008 On capillary–gravity waves generated by a slowly moving object. Phys. Rev. Lett. p. 074504.
Childress, S. 1981 Mechanics of Swimming and Flying. Cambridge University Press.
Dabiri, J. O. 2005 On the estimation of swimming and flying forces from wake measurements. J. Exp. Biol. 208, 35193532.
Darnhofer-Demar, B. 1969 Zur fortbewegung des wasserläufers Gerris lacustris L. auf des wasseroberfläche. Zool. Anz. Suppl. 32, 430439.
Denny, M. W. 1993 Air and Water: The Biology and Physics of Life's Media. Princeton University Press.
Denny, M. W. 2004 Paradox lost: answers and questions about walking on water. J. Exp. Biol. 207, 16011606.
Dias, F. & Kharif, C. 1999 Numerical study of capillary-gravity solitary waves. Annu. Rev. Fluid Mech. 31, 301346.
Dias, F., Menasce, D. & Vanden-Broeck, J. M. 1996 Numerical study of capillary-gravity solitary waves. Eur. J. Mech. B 15, 1736.
Dickinson, M. H. 2003 Animal locomotion: how to walk on water. Nature 424, 621622.
Dufour, L. 1833 Recherches Anatomiques et Physiologiques sur les Hémiptères, Accompagnées de Considèrations Relatives à l'Histoire Naturelle et à la Classification de ces Insectes, pp. 68–74. Impr. de Bachelier, extrait des Mémoires des savants étrangers, tome IV.
Dussan, E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech 11, 371400.
Dussan, E. B. & Chow, R. T. 1983 On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. J. Fluid Mech. 137, 129.
Floyd, S., Keegan, T., Palmisano, J. & Sitti, M. 2006 A novel water running robot inspired by basilisk lizards. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5430–5436.
Flynn, M. R. & Bush, J. W. M. 2008 Underwater breathing: the mechanics of plastron respiration. J. Fluid Mech. 608, 275296.
Gao, X. & Jiang, L. 2004 Water-repellent legs of water striders. Nature 432, 36.
de Gennes, P. G., Brochard-Wyart, F. & Quéré, D. 2003 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls and Waves. Springer.
Glasheen, J. W. & McMahon, T. A. 1996 a A hydrodynamic model of locomotion in the Basilisk lizard. Nature 380, 340342.
Glasheen, J. W. & McMahon, T. A. 1996 b Size dependence of water-running ability in Basilisk lizards Basiliscus basiliscus. J. Exp. Biol. 199, 26112618.
Hinton, H. E. 1976 Plastron respiration in bugs and beetles. J. Insect Physiol. 22, 15291550.
Holdgate, M. W. 1955 The wetting of insect cuticle by water. J. Exp. Biol. pp. 591–617.
Hsieh, T. S. 2003 Three-dimensional hindlimb kinematics of water running in the plumed basilisk lizard (Basiliscus plumifrons). J. Exp. Biol. 206, 43634377.
Hsieh, T. S. 2004 Running on water: three-dimensional force generation by basilisk lizards. Proc. Natl Acad. Sci. 101, 1678416788.
Hu, D. L. & Bush, J. W. M. 2005 Meniscus-climbing insects. Nature 437, 733736.
Hu, D. L., Chan, B. & Bush, J. W. M. 2003 The hydrodynamics of water strider locomotion. Nature 424, 663666.
Hu, D. L., Prakash, M., Chan, B. & Bush, J. W. M. 2007 Water-walking devices. Exp. Fluids 43, 769778.
Janssens, F. 2005 Checklist of the Collembola of the world: note on the morphology and origin of the foot of the Collembola. http://www.Collembola.org/publicat/unguis.htm.
Keller, J. B. 1998 Surface tension force on a partly submerged body. Phys. Fluids 10, 30093010.
Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.
Linsenmair, K. E. & Jander, R. 1976 Das ‘entspannungsschwimmen’ von Velia and Stenus. Naturwissenschaften 50, 231.
Mansfield, E. H., Sepangi, H. R. & Eastwood, E. A. 1997 Equilibrium and mutual attraction or repulsion of objects supported by surface tension. Philos. Trans. R. Soc. Lond. A 355, 869919.
Matsuda, K., Watanabe, S. & Eiju, T. 1985 Real-time measurement of large liquid surface deformation using a holographic shearing interferometer. Appl. Opt. 24 (24), 44434447.
Milewski, P. A. & Vanden-Broeck, J. M. 1999 Time-dependent gravity-capillary flows past an obstacle. Wave Mot. 29, 6379.
Miyamoto, S. 1955 On a special mode of locomotion utilizing surface tension at the water-edge in some semiaquatic insects. Kontyû 23, 4552.
Noble-Nesbitt, J. 1963 Transpiration in Podura aquatica L. (Collembola, Isotomidae) and the wetting properties of its cuticle. J. Exp. Biol. 40, 681700.
Plateau, J. 1873 Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires. Gauthier-Villars.
Prakash, M. & Bush, J. W. M. Interfacial propulsion by directional adhesion. Nat. Materials (submitted).
Quéré, D. 2008 Wetting and Roughness. Annu. Rev. Mater. Res. 38, 7199.
Ray, J. 1710 Historia insectorum. Impensis A. & J. Churchill.
Reyssat, M., Pépin, A., Marty, F., Chen, Y. & Quéré, D. 2006 Bouncing transitions in microtextured materials. Europhys. Lett. 74, 306312.
Schildknecht, H. 1976 Chemical ecology - a chapter of modern natural products chemistry. Angew. Chem. Intl Ed. Engl. 15, 214222.
Scriven, L. E. & Sternling, C. V. 1970 The Marangoni effects. Nature 187, 186188.
Song, Y. S., Suhr, S. H. & Sitti, M. 2006 Modeling of the supporting legs for designing a biomimetic water strider robot. In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2303–2310.
Spedding, G. R., Rosén, M. & Hedenstrom, A. 2003 A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. J. Exp. Biol. 206, 23132344.
Spilhaus, A. 1948 Raindrop size, shape and falling speed. J. Atmos. Sci. 5 (3), 108110.
Stratton, G. E., Suter, R. B. & Miller, P. R. 2004 a Evolution of water surface locomotion by spiders: a comparative approach. Biol. J. Linn. Soc. 81 (1), 6378.
Stratton, G. E., Suter, R. B. & Miller, P. R. 2004 b Taxonomic variation among spiders in the ability to repel water: surface adhesion and hair density. J. Arachnol. 32, 1121.
Suhr, S. H., Song, Y. S., Lee, S. J. & Sitti, M. 2005 Biologically inspired miniature water strider robot. Proc. Robot. Sci. Sys. pp. 42–48.
Sun, S. M. & Keller, J. B. 2001 Capillary–gravity wave drag. Phys. Fluids 13 (8), 21462151.
Suter, R. B. 2003 Trichobothrial mediation of an aquatic escape response: directional jumps by the fishing spider. J. Insect Sci. 3, 17.
Suter, R. B. & Gruenwald, J. 2000 Predator avoidance on the water surface? Kinematics and efficacy of vertical jumping by Dolomedes (Araneae, Pisauridae). J. Arachnol. 28 (2), 201210.
Suter, R. B., Rosenberg, R. B., Loeb, S., Wildman, H. & Long, J. 1997 Locomotion on the water surface: propulsive mechanisms of the fisher spider Dolomedes triton. J. Exp. Biol. 200, 25232538.
Suter, R. B., Stratton, G. & Miller, P. 2003 Water surface locomotion by spiders: distinct gaits in diverse families. J. Arachnol. 31 (3), 428432.
Suter, R. B. & Wildman, H. 1999 Locomotion on the water surface: hydrodynamic constraints on rowing velocity require a gait change. J. Exp. Biol. 202, 27712785.
Taneda, S. 1991 Visual observations of the flow around a half-submerged oscillating sphere. J. Fluid. Mech. 227, 193209.
Taylor, G. K., Nudds, R. L. & Thomas, A. L. R. 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425, 707711.
Thorpe, W. H. & Crisp, D. J. 1947 Studies on plastron respiration. Part I. The biology of Apelocheirus [Hemiptera, Aphelocheiridae (Naucoridae)] and the mechanism of plastron rentention. J. Exp. Biol. 24, 227269.
Vanden-Broeck, J. & Dias, F. 1992 Gravity-capillary solitary waves in water of infinite depth and related free-surface flows. J. Fluid Mech. 240, 549557.
Vogel, S. 1994 Life in Moving Fluids. Princeton University Press.
Vogel, S. 2006 Living in a physical world. Part VIII. Gravity and life in water. J. Biosci. 30 (3), 309322.
Voropayev, S. I. & Afanasyev, Y. D. 1994 Vortex Structures in a Stratified Fluid, pp. 35–37. Chapman & Hall.
Wenzel, R. N. 1936 Resistance of solid surfaces to wetting by water. Indus. Engng Chem. 28, 988994.
Wilga, C. & Lauder, G. 2002 Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering. J. Exp. Biol. 205, 23652374.
Yu, Y., Guo, M., Li, X. & Zheng, Q. S. 2007 Meniscus-climbing behaviour and its minimum free-energy mechanism. Langmuir 23, 1054610550.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed