Skip to main content

Ice ripple formation at large Reynolds numbers

  • Carlo Camporeale (a1) and Luca Ridolfi (a1)

A free-surface-induced morphological instability is studied in the laminar regime at large Reynolds numbers () and on sub-horizontal walls (). We analytically and numerically develop the stability analysis of an inclined melting–freezing interface bounding a free-surface laminar flow. The complete solution of both the linearized flow field and the heat conservation equations allows the exact derivation of the upper and lower temperature gradients at the interface, as required by the Stefan condition, from which the dispersion relationship is obtained. The eigenstructure is obtained and discussed. Free-surface dynamics appears to be crucial for the triggering of upstream propagating ice ripples, which grow at the liquid–solid interface. The kinematic and the dynamic conditions play a key role in controlling the formation of the free-surface fluctuations; these latter induce a streamline distortion with an increment of the wall-normal velocities and a destabilizing phase shift in the net heat transfer to the interface. Three-dimensional effects appear to be crucial at high Reynolds numbers. The role of inertia forces, vorticity, and thermal boundary conditions are also discussed.

Corresponding author
Email address for correspondence:
Hide All
1. Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables. Dover.
2. Ashton, G. D. & Kennedy, J. F. 1972 Ripples on underside of river ice covers. Proc. ASCE 98 (HY9), 16031624.
3. Batchelor, G. K. 2000 An Introduction to Fluid Mechanics. Cambridge University Press.
4. Bender, C. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.
5. Benjamin, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554574.
6. Blumberg, P. N. & Curl, R. L. 1974 Experimental and theoretical studies of dissolution roughness. J. Fluid Mech. 65, 735751.
7. Bontozoglou, V. & Papapolymerou, G. 1997 Laminar flow down a wavy incline. Intl J. Multiphase Flow 23, 6979.
8. Camporeale, C., Canuto, C. & Ridolfi, L. 2011 A spectral approach for the stability analysis of turbulent open-channel flows over granular beds. Theor. Comput. Fluid Dyn. 26 (1), 5180.
9. Camporeale, C., Perona, P., Porporato, A. & Ridolfi, L. 2007 Hierarchy of models for meandering rivers and related morphodynamic processes. Rev. Geophys. 45, RG1001.
10. Camporeale, C. & Ridolfi, L. 2011 Modal versus nonmodal linear stability analysis of river dunes. Phys. Fluids 23 (10), 104102.
11. Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 2006 Spectral Methods. Fundamentals in Single Domains. Springer.
12. Coleman, S. E. & Edling, B. 2000 Sand wavelets in laminar open-channel flows. J. Hydraul. Res. 38 (5), 331338.
13. Colombini, M. & Stocchino, A. 2005 Coupling or decoupling bed and flow dynamics: fast and slow sediment waves at high Froude numbers. Phys. Fluids 17 (3), 036602.
14. Devauchelle, O., Malverti, L., Lajeunesse, E., Lagrée, P. Y., Josserand, C. & Nguyen Thu-Lam, K. D. 2010 Stability of bedforms in laminar flows with free surface: from bars to ripples. J. Fluid Mech. 642, 329348.
15. Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
16. Exner, F. M. 1925 Über Die Wechselwirkung Zwischen Wasser und Geschiebe in Flüssen, vol. 14, pp. 165180. Akademie der Wissenschaften, Wien (in German).
17. Feltham, D. L. & Worster, M. G. 1999 Flow-induced morphological instability of a mushy layer. J. Fluid Mech. 391, 337357.
18. Ferguson, R. I. 1973 Sinuosity of supraglacial streams. Geol. Soc. Am. Bull. 84, 251256.
19. Giannakis, D., Fischer, P. & Rosner, R. 2009 A spectral Galerkin method for the coupled Orr–Sommerfeld and induction equations for free-surface MHD. J. Comput. Phys. 228 (4), 11881233.
20. Gilpin, R. R. 1981 Ice formation in a pipe containing flows in the transition and turbulent regimes. J. Heat Transfer 103, 363368.
21. Gilpin, T., Hirata, R. R. & Cheng, K. C. 1980 Wave formation and heat transfer at an ice–water interface in the presence of a turbulent flow. J. Fluid Mech. 99, 619640.
22. Godreche, C. & Manneville, P.  (Eds) 1998 Hydrodynamics and Nonlinear Instabilities. Cambridge University Press.
23. Grosch, C. E. & Salwen, H. 1968 The stability of steady and time-dependent plane Poiseuille flow. J. Fluid Mech. 34, 177194.
24. Hutter, K. 1983 Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets. Springer.
25. Kaser, G., Cogley, J. G., Dyurgerov, M. B., Meier, M. F. & Ohmura, A. 2006 Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys. Res. Lett. 33 (19), L19501.
26. Lock, G. S. H 1990 The Growth and Decay of Ice. Cambridge University Press.
27. Luo, H. & Pozrikidis, C. 2006 Effect of inertia on film flow over oblique and three-dimensional corrugations. Phys. Fluids 18, 078107.
28. Neufeld, J. A., Goldstein, R. E. & Worster, M. G. 2010 On the mechanisms of icicle evolution. J. Fluid Mech. 647, 287308.
29. Ogawa, N. & Furukawa, Y. 2002 Surface instability of icicles. Phys. Rev. E 66 (4, part 1), 041202.
30. Olsson, P. J. & Henningson, D. S. 1995 Optimal disturbance growth in water table flow. Stud. Appl. Maths 94, 183210.
31. Parker, G. 1975 Meandering of supraglacial melt streams. Water Resour. Res. 11 (4), 551552.
32. Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.
33. Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows, Applied Mathematical Sciences , vol. 142. Springer.
34. Seminara, G. 2010 Fluvial sedimentary patterns. Annu. Rev. Fluid Mech. 42, 4366.
35. Shen, J. 1994 Efficient spectral-Galerkin methods. Part I. Direct solvers for the second and fourth order equations using Legendre polynomials. SIAM J. Sci. Comput. 15 (6), 14891505.
36. Short, M. B., Baygents, J. C. & Goldstein, R. E. 2006 A free-boundary theory for the shape of the ideal dripping icicle. Phys. Fluids 18 (8), 083101.
37. Stefan, J. 1891 Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Ann. Phys. Chem. 42, 269286.
38. Thomas, R. R. 1979 Size of scallops and ripples formed by flowing water. Nature 277, 281283.
39. Thorsness, C. B. & Hanratty, T. J. 1979 Stability of dissolving or depositing surfaces. AIChE 25, 697701.
40. Trefethen, L. N. & Embree, M. 2005 Spectra and Pseudospectra. Princeton University Press.
41. Ueno, K. 2003 Pattern formation in crystal growth under parabolic shear flow. Phys. Rev. E 68 (2, part 1), 021603.
42. Ueno, K., Farzaneh, M., Yamaguchi, S. & Tsuji, H. 2010 Numerical and experimental verification of a theoretical model of ripple formation in ice growth under supercooled water film flow. Fluid Dyn. Res. 42 (2), 025508.
43. Wang, C. Y. 1981 Liquid film flowing slowly down a wavy incline. AIChE J. 27 (2), 207212.
44. Wierschem, A. & Aksel, N. 2003 Instability of a liquid film flowing down an inclined wavy plane. Physica D 186, 221237.
45. Worster, M. G. 1992 Instabilities of the liquid and mushy layers. J. Fluid Mech. 237, 649669.
46. Worster, M. G. 2000 Solidification of fluids. In Perspectives in Fluid Dynamics: A Collective Introduction to Current Research (ed. Worster, M. G., Batchelor, G. K. & Moffat, H. K. ). Cambridge University Press (chapter 8).
47. Yih, C. S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321334.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed