Skip to main content Accessibility help

Ice scallops: a laboratory investigation of the ice–water interface

  • Mitchell Bushuk (a1) (a2), David M. Holland (a2) (a3), Timothy P. Stanton (a4), Alon Stern (a2) and Callum Gray (a5)...


Ice scallops are a small-scale (5–20 cm) quasi-periodic ripple pattern that occurs at the ice–water interface. Previous work has suggested that scallops form due to a self-reinforcing interaction between an evolving ice-surface geometry, an adjacent turbulent flow field and the resulting differential melt rates that occur along the interface. In this study, we perform a series of laboratory experiments in a refrigerated flume to quantitatively investigate the mechanisms of scallop formation and evolution in high resolution. Using particle image velocimetry, we probe an evolving ice–water boundary layer at sub-millimetre scales and 15 Hz frequency. Our data reveal three distinct regimes of ice–water interface evolution: a transition from flat to scalloped ice; an equilibrium scallop geometry; and an adjusting scallop interface. We find that scalloped-ice geometry produces a clear modification to the ice–water boundary layer, characterized by a time-mean recirculating eddy feature that forms in the scallop trough. Our primary finding is that scallops form due to a self-reinforcing feedback between the ice-interface geometry and shear production of turbulent kinetic energy in the flow interior. The length of this shear production zone is therefore hypothesized to set the scallop wavelength.


Corresponding author

Email address for correspondence:


Hide All
Achenbach, E. 1974 The effects of surface roughness and tunnel blockage on the flow past spheres. J. Fluid Mech. 65 (1), 113125.10.1017/S0022112074001285
Adrian, R. J. 2005 Twenty years of particle image velocimetry. Exp. Fluids 39 (2), 159169.10.1007/s00348-005-0991-7
Adrian, R. J. & Westerweel, J. 2011 Particle Image Velocimetry. Cambridge University Press.
Ashton, G. D. 1972 Turbulent heat transfer to wavy boundaries. In Proceedings of the 1972 Heat Transfer Fluid Mech. Inst., pp. 200213. Stanford University Press.
Ashton, G. D. & Kennedy, J. F. 1972 Ripples on underside of river ice covers. J. Hydraulics Division 98 (9), 16031624.
Blumberg, P. N. & Curl, R. L. 1974 Experimental and theoretical studies of dissolution roughness. J. Fluid Mech. 65 (4), 735751.10.1017/S0022112074001625
Camporeale, C. & Ridolfi, L. 2012 Ice ripple formation at large Reynolds numbers. J. Fluid Mech. 694, 225251.10.1017/jfm.2011.540
Carey, K. L. 1966 Observed configuration and computed roughness of the underside of river ice, St Croix River, Wisconsin. US Geol. Survey Prof. Paper Paper 550, B192B198.
Claudin, P., Durán, O. & Andreotti, B. 2017 Dissolution instability and roughening transition. J. Fluid Mech. 832, R2.10.1017/jfm.2017.711
Curl, R. L. 1966 Scallops and flutes. Trans. Cave Res. Group 7, 121160.
Dansereau, V., Heimbach, P. & Losch, M. 2014 Simulation of subice shelf melt rates in a general circulation model: velocity-dependent transfer and the role of friction. J. Geophys. Res.: Oceans 119 (3), 17651790.10.1002/2013JC008846
Emery, W. J. & Thomson, R. E. 2001 Data Analysis Methods in Physical Oceanography, vol. 59, p. 180. Elsevier Science.
Feltham, D. L., Worster, M. G. & Wettlaufer, J. S. 2002 The influence of ocean flow on newly forming sea ice. J. Geophys. Res.: Oceans 107 (C2), 19.10.1029/2000JC000559
Gilpin, R. R., Hirata, T. & Cheng, K. C. 1980 Wave formation and heat transfer at an ice–water interface in the presence of a turbulent flow. J. Fluid Mech. 99, 619640.10.1017/S0022112080000791
Goto, Y., Yasuda, I. & Nagasawa, M. 2016 Turbulence estimation using fast-response thermistors attached to a free-fall vertical microstructure profiler. J. Atmos. Ocean. Technol. 33 (10), 20652078.10.1175/JTECH-D-15-0220.1
Hanratty, T. J. 1981 Stability of surfaces that are dissolving or being formed by convective diffusion. Annu. Rev. Fluid Mech. 13 (1), 231252.10.1146/annurev.fl.13.010181.001311
Hellmer, H. H. & Olbers, D. J. 1989 A two-dimensional model for the thermohaline circulation under an ice shelf. Antarctic Sci. 1 (4), 325336.10.1017/S0954102089000490
Hobson, B. W., Sherman, A. D. & McGill, P. R. 2011 Imaging and sampling beneath free-drifting icebergs with a remotely operated vehicle. Deep-Sea Res. II 58 (11-12), 13111317.10.1016/j.dsr2.2010.11.006
Holland, D. M. & Jenkins, A. 1999 Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 29 (8), 17871800.10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2
Hsu, K.-S., Locher, F. A. & Kennedy, J. F. 1979 Forced-convection heat transfer from irregular melting wavy boundaries. Trans. ASME J. Heat Transfer 101 (4), 598602.10.1115/1.3451043
Jenkins, A. 1991 A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res.: Oceans 96 (C11), 2067120677.10.1029/91JC01842
Jenkins, A., Nicholls, K. W. & Corr, H. F. J. 2010 Observation and parameterization of ablation at the base of Ronne Ice Shelf, Antarctica. J. Phys. Oceanogr. 40 (10), 22982312.10.1175/2010JPO4317.1
Kader, B. A. & Yaglom, A. M. 1972 Heat and mass transfer laws for fully turbulent wall flows. Intl J. Heat Mass Transfer 15 (12), 23292351.10.1016/0017-9310(72)90131-7
McPhee, M. 2008 Air–Ice–Ocean Interaction: Turbulent Ocean Boundary Layer Exchange Processes. Springer.10.1007/978-0-387-78335-2
McPhee, M. G. 1992 Turbulent heat flux in the upper ocean under sea ice. J. Geophys. Res.: Oceans 97 (C4), 53655379.10.1029/92JC00239
McPhee, M. G., Maykut, G. A. & Morison, J. H. 1987 Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. J. Geophys. Res.: Oceans 92 (C7), 70177031.10.1029/JC092iC07p07017
Mellor, G. L., McPhee, M. G. & Steele, M. 1986 Ice–seawater turbulent boundary layer interaction with melting or freezing. J. Phys. Oceanogr. 16 (11), 18291846.10.1175/1520-0485(1986)016<1829:ISTBLI>2.0.CO;2
Nelson, J. M., McLean, S. R. & Wolfe, S. R. 1993 Mean flow and turbulence fields over two-dimensional bed forms. Water Resour. Res. 29 (12), 39353953.10.1029/93WR01932
Pedocchi, F., Martin, J. E. & García, M. H. 2008 Inexpensive fluorescent particles for large-scale experiments using particle image velocimetry. Exp. Fluids 45 (1), 183186.10.1007/s00348-008-0516-2
Ramudu, E., Hirsh, B. H., Olson, P. & Gnanadesikan, A. 2016 Turbulent heat exchange between water and ice at an evolving ice–water interface. J. Fluid Mech. 798, 572597.10.1017/jfm.2016.321
Richmond, P. W. & Lunardini, V. J.1990 Heat transfer from water flowing through a chilled-bed open channel. Tech. Rep. DTIC Document.
Schlichting, H., Gersten, K., Krause, E., Oertel, H. & Mayes, K. 1960 Boundary-Layer Theory, vol. 7. Springer.
Seki, N., Fukusako, S. & Younan, G. W. 1984 Ice-formation phenomena for water flow between two cooled parallel plates. Trans. ASME J. Heat Transfer 106 (3), 498505.10.1115/1.3246706
Stanton, T. P.2001 A turbulence-resolving coherent acoustic sediment flux probe device and method for using. US Patent 6,262,942.
Steele, M., Mellor, G. L. & McPhee, M. G. 1989 Role of the molecular sublayer in the melting or freezing of sea ice. J. Phys. Oceanogr. 19 (1), 139147.10.1175/1520-0485(1989)019<0139:ROTMSI>2.0.CO;2
Stefan, J. 1891 On the theory of ice formation, especially ice formation in the polar seas. Ann. Phys. 278 (2), 269286.10.1002/andp.18912780206
Thomas, R. M. 1979 Size of scallops and ripples formed by flowing water. Nature 277 (5694), 281.10.1038/277281a0
Thorsness, C. B. & Hanratty, T. J. 1979a Mass transfer between a flowing fluid and a solid wavy surface. AIChE J. 25 (4), 686697.10.1002/aic.690250415
Thorsness, C. B. & Hanratty, T. J. 1979b Stability of dissolving or depositing surfaces. AIChE J. 25 (4), 697701.10.1002/aic.690250416
Wettlaufer, J. S. 1991 Heat flux at the ice–ocean interface. J. Geophys. Res.: Oceans 96 (C4), 72157236.10.1029/90JC00081
Wieneke, B. 2015 PIV uncertainty quantification from correlation statistics. Meas. Sci. Technol. 26 (7), 074002.10.1088/0957-0233/26/7/074002
Willert, C. E. & Gharib, M. 1991 Digital particle image velocimetry. Exp. Fluids 10 (4), 181193.10.1007/BF00190388
Wykes, M. S. D., Mac Huang, J., Hajjar, G. A. & Ristroph, L. 2018 Self-sculpting of a dissolvable body due to gravitational convection. Phys. Rev. Fluids 3 (4), 043801.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title
Supplementary materials

Bushuk et al. supplementary material
Bushuk et al. supplementary material 1

 PDF (2.0 MB)
2.0 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed