Hostname: page-component-6bb9c88b65-xjl2h Total loading time: 0 Render date: 2025-07-21T10:12:16.088Z Has data issue: false hasContentIssue false

Impact of particle injection velocity on the stability of the particulate Rayleigh–Bénard system

Published online by Cambridge University Press:  21 July 2025

Saad Raza*
Affiliation:
Univ. Lille, Unité de Mécanique de Lille - J. Boussinesq (UML) ULR 7512, F-59000, Lille, France
Rômulo B. Freitas
Affiliation:
Federal Center for Technological Education Celso Suckow da Fonseca, Nova Iguaçu, RJ 26041-271, Brazil
Leonardo S.B. Alves
Affiliation:
PGMEC, Univ. Federal Fluminense, Rua Passo da Patria 156, Niteroi, Rio de Janeiro 24210-240, Brazil
Enrico Calzavarini
Affiliation:
Univ. Lille, Unité de Mécanique de Lille - J. Boussinesq (UML) ULR 7512, F-59000, Lille, France
Silvia C. Hirata
Affiliation:
Univ. Lille, Unité de Mécanique de Lille - J. Boussinesq (UML) ULR 7512, F-59000, Lille, France
*
Corresponding author: Saad Raza, saad.raza@univ-lille.fr

Abstract

The linear stability of a thermally stratified fluid layer between horizontal walls, where non-Brownian thermal particles are injected continuously at one boundary and extracted at the other – a system known as particulate Rayleigh–Bénard (pRB) – is studied. For a fixed volumetric particle flux and minimal thermal coupling, reducing the injection velocity stabilises the system when heavy particles are introduced from above, but destabilises it when light particles are injected from below. For very light particles (bubbles), low injection velocities can shift the onset of convection to negative Rayleigh numbers, i.e. heating from above. Particles accumulate non-uniformly near the extraction wall and in regions of strong vertical flow, aligning with either wall-impinging or wall-detaching zones depending on whether injection is at sub- or super-terminal velocity. The increase of the volumetric particle flux always enhances these effects.

Information

Type
JFM Rapids
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alves, L.S.B., Hirata, S.C., Schuabb, M. & Barletta, A. 2019 Identifying linear absolute instabilities from differential eigenvalue problems using sensitivity analysis. J. Fluid Mech. 870, 941969.10.1017/jfm.2019.275CrossRefGoogle Scholar
Chen, X. & Prosperetti, A. 2024 Particle-resolved multiphase Rayleigh–Bénard convection. Phys. Rev. Fluids 9 (5), 054301.10.1103/PhysRevFluids.9.054301CrossRefGoogle Scholar
Guazzelli, É. & Hinch, J. 2011 Fluctuations and instability in sedimentation. Annu. Rev. Fluid Mech. 43 (1), 97116.10.1146/annurev-fluid-122109-160736CrossRefGoogle Scholar
Mudde, R.F. 2005 Gravity-driven bubbly flows. Annu. Rev. Fluid Mech. 37 (2005), 393423.10.1146/annurev.fluid.37.061903.175803CrossRefGoogle Scholar
Nakamura, K., Yoshikawa, H.N., Tasaka, Y. & Murai, Y. 2020 Linear stability analysis of bubble-induced convection in a horizontal liquid layer. Phys. Rev. E 102 (5), 053102.10.1103/PhysRevE.102.053102CrossRefGoogle Scholar
Nakamura, K., Yoshikawa, H.N., Tasaka, Y. & Murai, Y. 2021 Bifurcation analysis of bubble-induced convection in a horizontal liquid layer: role of forces on bubbles. J. Fluid Mech. 923, R4.10.1017/jfm.2021.601CrossRefGoogle Scholar
Prakhar, S. & Prosperetti, A. 2021 Linear theory of particulate Rayleigh–Bénard instability. Phys. Rev. Fluids 6 (8), 083901.10.1103/PhysRevFluids.6.083901CrossRefGoogle Scholar
Raza, S., Calzavarini, E. & Hirata, S.C. 2025 Onset of convection in the particulate Rayleigh–Benard system: the role of particle-fluid thermal coupling. in turbulence. In Heat and Mass Transfer, vol. 11, 2025 Begell House, Inc..Google Scholar
Raza, S., Hirata, S.C. & Calzavarini, E. 2024 Stabilization of the Rayleigh–Bénard system by injection of thermal inertial particles and bubbles. Phys. Fluids 36 (12), 124141.10.1063/5.0238106CrossRefGoogle Scholar
Saffman, P.G. 1962 On the stability of laminar flow of a dusty gas. J. Fluid Mech. 13 (1), 120128.10.1017/S0022112062000555CrossRefGoogle Scholar
de Souza, D.B., Freitas, R.B. & de B. Alves, L.S. 2021 Criterion for the linear convective to absolute instability transition of a jet in crossflow: the countercurrent viscous and round mixing-layer analogy. Phys. Rev. Fluids 6, L041901.10.1103/PhysRevFluids.6.L041901CrossRefGoogle Scholar
Srinivas, T. & Tomar, G. 2025 Weakly nonlinear analysis of particle-laden Rayleigh–Bénard convection. arXiv: 2503.15411.Google Scholar