Skip to main content Accessibility help
×
Home

Improved bounds on horizontal convection

  • Cesar B. Rocha (a1), Thomas Bossy (a2), Stefan G. Llewellyn Smith (a3) (a4) and William R. Young (a4)

Abstract

For the problem of horizontal convection the Nusselt number based on entropy production is bounded from above by $C\,Ra^{1/3}$ as the horizontal convective Rayleigh number $Ra\rightarrow \infty$ for some constant $C$ (Siggers et al., J. Fluid Mech., vol. 517, 2004, pp. 55–70). We re-examine the variational arguments leading to this ‘ultimate regime’ by using the Wentzel–Kramers–Brillouin method to solve the variational problem in the $Ra\rightarrow \infty$ limit and exhibiting solutions that achieve the ultimate $Ra^{1/3}$ scaling. As expected, the optimizing flows have a boundary layer of thickness ${\sim}Ra^{-1/3}$ pressed against the non-uniformly heated surface; but the variational solutions also have rapid oscillatory variation with wavelength ${\sim}Ra^{-1/3}$ along the wall. As a result of the exact solution of the variational problem, the constant $C$ is smaller than the previous estimate by a factor of $2.5$ for no-slip and $1.6$ for no-stress boundary conditions. This modest reduction in $C$ indicates that the inequalities used by Siggers et al. (J. Fluid Mech., vol. 517, 2004, pp. 55–70) are surprisingly accurate.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Improved bounds on horizontal convection
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Improved bounds on horizontal convection
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Improved bounds on horizontal convection
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: crocha@whoi.edu

References

Hide All
Balmforth, N. J. & Young, W. 2003 Diffusion-limited scalar cascades. J. Fluid Mech. 482, 91100.
Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D. & Brown, B. P.2019 Dedalus: A flexible framework for numerical simulations with spectral methods. Phys. Rev. Res. (submitted) arXiv:1905.10388.
Chiu-Webster, S., Hinch, E. J. & Lister, J. R. 2008 Very viscous horizontal convection. J. Fluid Mech. 611, 395426.
Coman, M. A., Griffiths, R. W. & Hughes, G. O. 2006 Sandström’s experiments revisited. J. Mar. Res. 64, 783796.
Doering, C. R. & Constantin, P. 1996 Variational bounds on energy dissipation in incompressible flows. III. Convection. Phys. Rev. E 53, 5957.
Gayen, B., Griffiths, R. & Hughes, G. 2014 Stability transitions and turbulence in horizontal convection. J. Fluid Mech. 751, 698724.
Gayen, B., Griffiths, R. W., Hughes, G. & Saenz, J. 2013 Energetics of horizontal convection. J. Fluid Mech. 716, R10.
Hassanzadeh, P., Chini, G. P. & Doering, C. R. 2014 Wall to wall optimal transport. J. Fluid Mech. 751, 627662.
Howard, L. N. 1972 Bounds on flow quantities. Annu. Rev. Fluid Mech. 4, 473494.
Hughes, G. O. & Griffiths, R. W. 2008 Horizontal convection. Annu. Rev. Fluid Mech. 40, 185208.
Jeffreys, H. 1925 On fluid motions produced by differences of temperature and humidity. Q. J. R. Meteorol. Soc. 51, 347356.
Kerswell, R. 2001 New results in the variational approach to turbulent Boussinesq convection. Phys. Fluids 13, 192209.
Kuhlbrodt, T. 2008 On Sandström’s inferences from his tank experiments: a hundred years later. Tellus A 60, 819836.
Munk, W. & Wunsch, C. I. 1998 Abyssal recipes ii: energetics of tidal and wind mixing. Deep Sea Res. Part I 45, 19772010.
Paparella, F. & Young, W. R. 2002 Horizontal convection is non-turbulent. J. Fluid Mech. 466, 205214.
Rosevear, M. G., Gayen, B. & Griffiths, R. W. 2017 Turbulent horizontal convection under spatially periodic forcing: a regime governed by interior inertia. J. Fluid Mech. 831, 491523.
Rossby, H. T. 1965 On thermal convection driven by non-uniform heating from below: an experimental study. Deep-Sea Res. 12, 916.
Sandström, J. W. 1908 Dynamische Versuche mit Meerwasser. Ann. Hydrogr. Mar. Meteorol. 36, 623 (in German).
Scotti, A. & White, B. 2011 Is horizontal convection really ‘non-turbulent?’ Geophys. Res. Lett. 38, L21609.
Shishkina, O., Grossmann, S. & Lohse, D. 2016 Heat and momentum transport scalings in horizontal convection. Geophys. Res. Lett. 43, 12191225.
Siggers, J. H., Kerswell, R. R. & Balmforth, N. J. 2004 Bounds on horizontal convection. J. Fluid Mech. 517, 5570.
Wang, W. & Huang, R. X. 2005 An experimental study on thermal convection driven by horizontal differential heating. J. Fluid Mech. 540, 4973.
Wen, B., Chini, G. P., Kerswell, R. R. & Doering, C. R. 2015 Time-stepping approach for solving upper-bound problems: application to two-dimensional Rayleigh–Bénard convection. Phys. Rev. E 92, 043012.
Whitehead, J. P. & Doering, C. R. 2011 Ultimate state of two-dimensional Rayleigh–Bénard convection between free-slip fixed-temperature boundaries. Phys. Rev. Lett. 106, 244501.
Winters, K. B. & Young, W. R. 2009 Available potential energy and buoyancy variance in horizontal convection. J. Fluid Mech. 629, 221230.
Young, W. R. 2010 Dynamic enthalpy, conservative temperature, and the seawater Boussinesq approximation. J. Phys. Oceanogr. 40, 394400.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Improved bounds on horizontal convection

  • Cesar B. Rocha (a1), Thomas Bossy (a2), Stefan G. Llewellyn Smith (a3) (a4) and William R. Young (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed