Skip to main content
×
×
Home

Inertia–gravity waves in inertially stable and unstable shear flows

  • François Lott (a1), Christophe Millet (a2) and Jacques Vanneste (a3)
Abstract

An inertia–gravity wave (IGW) propagating in a vertically sheared, rotating stratified fluid interacts with the pair of inertial levels that surround the critical level. An exact expression for the form of the IGW is derived here in the case of a linear shear and used to examine this interaction in detail. This expression recovers the classical values of the transmission and reflection coefficients $|T|=\text{e}^{-{\rm\pi}{\it\mu}}$ and $|R|=0$ , where ${\it\mu}^{2}=J(1+{\it\nu}^{2})-1/4$ , $J$ is the Richardson number and ${\it\nu}$ the ratio between the horizontal transverse and along-shear wavenumbers. For large $J$ , a WKB analysis provides an interpretation of this result in term of tunnelling: an IGW incident on the lower inertial level becomes evanescent between the inertial levels, returning to an oscillatory behaviour above the upper inertial level. The amplitude of the transmitted wave is directly related to the decay of the evanescent solution between the inertial levels. In the immediate vicinity of the critical level, the evanescent IGW is well represented by the quasi-geostrophic approximation, so that the process can be interpreted as resulting from the coupling between balanced and unbalanced motion. The exact and WKB solutions describe the so-called valve effect, a dependence of the behaviour in the region between the inertial levels on the direction of wave propagation. For $J<1$ this is shown to lead to an amplification of the wave between the inertial levels. Since the flow is inertially unstable for $J<1$ , this establishes a correspondence between the inertial-level interaction and the condition for inertial instability.

Copyright
Corresponding author
Email address for correspondence: flott@lmd.ens.fr
References
Hide All
Ablowitz, M. J. & Fokas, A. S. 1997 Complex Variables: Introduction and Applications. Cambridge University Press.
Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions, 9th edn. Dover.
Alford, M. H. 2003 Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature 423, 159162.
Andrews, D. G., Holton, J. R. & Leovy, C. B. 1987 Middle Atmosphere Dynamics. Academic.
Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.
Bennetts, D. A. & Hoskins, B. J. 1979 Conditional symmetric instability – a possible explanation for frontal rainbands. Q. J. R. Meteorol. Soc. 105, 945962.
Booker, J. R. & Bretherton, F. P. 1967 The critical layer for internal gravity waves in a shear flow. J. Fluid Mech. 27, 513539.
Eliassen, A. & Palm, E. 1961 On the transfer of energy in stationary mountain waves. Geophys. Publ. 22, 123.
Ferrari, R. & Wunsch, C. 2009 Ocean circulation kinetic energy: reservoirs, sources and sinks. Annu. Rev. Fluid Mech. 41, 253282.
Gill, A. 1982 Atmosphere-Ocean Dynamics. Academic.
Grimshaw, R. 1975 Internal gravity waves: critical layer absorption in a rotating fluid. J. Fluid Mech. 70, 287304.
Gula, J. & Zeitlin, V. 2010 Instabilities of buoyancy driven coastal currents and their nonlinear evolution in the two-layer rotating shallow water model. Part 1. Passive lower layer. J. Fluid Mech. 659, 6993.
Hertzog, A., Boccara, G., Vincent, R. A., Vial, F. & Cocquerez, P. 2008 Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: results from the Vorcore campaign in Antarctica. J. Atmos. Sci. 65, 30563070.
Howard, L. H. 1961 Note on a paper of John W. Miles. J. Fluid Mech. 10, 509512.
Inverarity, G. W. & Shutts, G. J. 2000 A general, linearized vertical structure equation for the vertical velocity: properties, scalings and special cases. Q. J. R. Meteorol. Soc. 126, 27092724.
Jones, W. L. 1967 Propagation of internal gravity waves in fluids with shear flow and rotation. J. Fluid Mech. 30, 439448.
Lindzen, R. S. 1988 Instability of plane parallel shear-flow (toward a mechanistic picture of how it works). Pure Appl. Geophys. 126, 103121.
Lott, F. 1997 The transient emission of propagating gravity waves by a stably stratified shear layer. Q. J. R. Meteorol. Soc. 123, 16031619.
Lott, F. 2003 Large-scale flow response to short gravity waves breaking in a rotating shear flow. J. Atmos. Sci. 60, 16911704.
Lott, F., Kelder, H. & Teitelbaum, H. 1992 A transition from Kelvin–Helmholtz instabilities to propagating wave instabilities. Phys. Fluids A 4, 19901997.
Lott, F., Plougonven, R. & Vanneste, J. 2010 Gravity waves generated by sheared potential-vorticity anomalies. J. Atmos. Sci. 67, 157170.
Lott, F., Plougonven, R. & Vanneste, J. 2012 Gravity waves generated by sheared three-dimensional potential vorticity anomalies. J. Atmos. Sci. 69, 21342151.
Mamatsashvili, G. R., Avsarkisov, V. S., Chagelishvili, G. D., Chanishvili, R. G. & Kalashnik, M. V. 2010 Transient dynamics of nonsymmetric perturbations versus symmetric instability in baroclinic zonal shear flows. J. Atmos. Sci. 67, 29722989.
Marshall, J., Ferrari, R., Forget, G., Maze, G., Andersson, A., Bates, N., Dewar, W., Doney, S., Fratantoni, D., Joyce, T., Straneo, F., Toole, J., Weller, R., Edson, J., Gregg, M., Kelly, K., Lozier, S., Palter, J., Lumpkin, R., Samelson, R., Skyllingstad, E., Silverthorne, K., Talley, L. & Thomas, L. 2009 The CLIMODE field campaign: observing the cycle of convection and restratification over the Gulf Stream. Bull. Am. Meteorol. Soc. 90, 13371350.
McWilliams, J. C. 2003 Diagnostic force balance and its limits. In Nonlinear Processes in Geophysical Fluid Dynamics (ed. Velasco Fuentes, O. U., Sheinbaum, J. & Ochoa, J.), pp. 287304. Kluwer.
Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496508.
Miyahara, S. 1981 A note on the behavior of waves around the inertio frequency. J. Meteorol. Soc. Japan 59, 902905.
Molemaker, M. J., McWilliams, J. C. & Yavneh, I. 2005 Baroclinic instability and loss of balance. J. Phys. Oceanogr. 35, 15051517.
Plougonven, R., Muraki, D. J. & Snyder, C. 2005 A baroclinic instability that couples balanced motions and gravity waves. J. Atmos. Sci. 62, 15451559.
Plougonven, R. & Snyder, C. 2007 Inertia-gravity waves spontaneously generated by jets and fronts. Part I: different baroclinic life cycles. J. Atmos. Sci. 64, 25022520.
Rabinovitch, A., Umurhan, O. M., Harnik, N., Lott, F. & Heifetz, E. 2011 Vorticity inversion and action-at-a-distance instability in stably stratified shear flow. J. Fluid Mech. 670, 301325.
Richter, J. H., Sassi, F. & Garcia, R. R. 2010 Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci. 67, 136156.
Sakai, S. 1989 Rossby–Kelvin instability: a new type of ageostrophic instability caused by a resonnance between Rossby waves and gravity waves. J. Fluid Mech. 202, 149176.
Sato, K. & Yoshiki, M. 2008 Gravity wave generation around the polar vortex in the stratosphere revealed by 3-hourly radiosonde observations at Syowa station. J. Atmos. Sci. 65, 37193735.
Scavuzzo, C. M., Lamfri, M. A., Teitelbaum, H. & Lott, F. 1998 A study of the low frequency inertio-gravity waves observed during PYREX. J. Geophys. Res. D2 103, 17471758.
Shen, B. W. & Lin, Y. L. 1999 Effects of critical levels on two-dimensional back-sheared flow over an isolated mountain ridge on an f plane. J. Atmos. Sci. 56, 32863302.
Shutts, G. J. 2003 Inertia–gravity wave and neutral Eady wave trains forced by directionally sheared flow over isolated hills. J. Atmos. Sci. 60, 593606.
Stone, P. H. 1966 On non-geostrophic baroclinic instability. J. Atmos. Sci. 23, 390400.
Sutyrin, G. G. 2008 Lack of balance in continuously stratified rotating flows. J. Fluid Mech. 615, 93100.
Vanneste, J. & Yavneh, I. 2007 Unbalanced instabilities of rapidly rotating stratified sheared flows. J. Fluid Mech. 584, 373396.
Whitt, D. B. & Thomas, L. N. 2013 Near-inertial waves in strongly baroclinic currents. J. Phys. Oceanogr. 43, 706725.
Yamanaka, M. D. & Tanaka, H. 1984 Propagation and breakdown of internal inertia-gravity waves near critical levels in the middle atmosphere. J. Meteorol. Soc. Japan 62, 117.
Zuelicke, C. & Peters, D. 2008 Parameterization of strong stratospheric inertia-gravity waves forced by poleward-breaking Rossby waves. Mon. Weath. Rev. 136, 98119.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed