Skip to main content
×
×
Home

Inertial focusing of finite-size particles in microchannels

  • Evgeny S. Asmolov (a1) (a2), Alexander L. Dubov (a1), Tatiana V. Nizkaya (a1), Jens Harting (a3) (a4) (a5) and Olga I. Vinogradova (a1) (a6) (a7)...
Abstract

At finite Reynolds numbers, $Re$ , particles migrate across laminar flow streamlines to their equilibrium positions in microchannels. This migration is attributed to a lift force, and the balance between this lift and gravity determines the location of particles in channels. Here we demonstrate that velocity of finite-size particles located near a channel wall differs significantly from that of an undisturbed flow, and that their equilibrium position depends on this, referred to as slip velocity, difference. We then present theoretical arguments, which allow us to generalize expressions for a lift force, originally suggested for some limiting cases and $Re\ll 1$ , to finite-size particles in a channel flow at $Re\leqslant 20$ . Our theoretical model, validated by lattice Boltzmann simulations, provides considerable insight into inertial migration of finite-size particles in a microchannel and suggests some novel microfluidic approaches to separate them by size or density at a moderate $Re$ .

Copyright
Corresponding author
Email addresses for correspondence: aes50@yandex.ru, oivinograd@yahoo.com
References
Hide All
Asmolov, E. S. 1999 The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 381, 6387.
Asmolov, E. S., Dubov, A. L., Nizkaya, T. V., Kuehne, A. J. C. & Vinogradova, O. I. 2015 Principles of transverse flow fractionation of microparticles in superhydrophobic channels. Lab on a Chip 15 (13), 28352841.
Benzi, R., Succi, S. & Vergassola, M. 1992 The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145197.
Bhagat, A. A. S., Kuntaegowdanahalli, S. S. & Papautsky, I. 2008 Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab on a Chip 8 (11), 19061914.
Cherukat, P. & McLaughlin, J. B. 1994 The inertial lift on a rigid sphere in a linear shear flow field near a flat wall. J. Fluid Mech. 263, 118.
Choi, Y.-S., Seo, K.-W. & Lee, S.-J. 2011 Lateral and cross-lateral focusing of spherical particles in a square microchannel. Lab on a Chip 11 (3), 460465.
Chun, B. & Ladd, A. J. C. 2006 Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys. Fluids 18, 031704.
Cox, R. G. & Hsu, S. K. 1977 The lateral migration of solid particles in a laminar flow near a plane. Intl J. Multiphase Flow 3, 201222.
Davis, A. M. J., Kezirian, M. T. & Brenner, H. 1994 On the Stokes–Einstein model of surface diffusion along solid surfaces: slip boundary conditions. J. Colloid Interface Sci. 165 (1), 129140.
Di Carlo, D., Edd, J. F., Humphry, K. J., Stone, H. A. & Toner, M. 2009 Particle segregation and dynamics in confined flows. Phys. Rev. Lett. 102 (9), 094503.
Di Carlo, D., Irimia, D., Tompkins, R. G. & Toner, M. 2007 Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl Acad. Sci. USA 104 (48), 1889218897.
Dubov, A. L., Schmieschek, S., Asmolov, E. S., Harting, J. & Vinogradova, O. I. 2014 Lattice–Boltzmann simulations of the drag force on a sphere approaching a superhydrophobic striped plane. J. Chem. Phys. 140 (3), 034707.
Dutz, S., Hayden, M. E. & Häfeli, U. O. 2017 Fractionation of magnetic microspheres in a microfluidic spiral: interplay between magnetic and hydrodynamic forces. PLOS ONE 12 (1), e0169919.
Feuillebois, F. 2004 Perturbation Problems at Low Reynolds Number, Lecture Notes-AMAS.
Feuillebois, F., Bazant, M. Z. & Vinogradova, O. I. 2010 Transverse flow in thin superhydrophobic channels. Phys. Rev. E 82, 055301(R).
Goldman, A. J., Cox, R. G. & Brenner, H. 1967 Slow viscous motion of a sphere parallel to a plane wall - II Couette flow. Chem. Engng Sci. 22, 653660.
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics With Special Applications to Particulate Media. Prentice-Hall.
Harting, J., Frijters, S., Ramaioli, M., Robinson, M., Wolf, D. E. & Luding, S. 2014 Recent advances in the simulation of particle-laden flows. Eur. Phys. J. Spec. Topics 223, 22532267.
Ho, B. P. & Leal, L. G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65, 365400.
Hood, K., Kahkeshani, S., Di Carlo, D. & Roper, M. 2016 Direct measurement of particle inertial migration in rectangular microchannels. Lab on a Chip 16, 28402850.
Hood, K., Lee, S. & Roper, M. 2015 Inertial migration of a rigid sphere in three-dimensional Poiseuille flow. J. Fluid Mech. 765, 452479.
Janoschek, F.2013 Mesoscopic simulation of blood and general suspensions in flow. PhD thesis, Eindhoven University of Technology.
Janoschek, F., Toschi, F. & Harting, J. 2010 Simplified particulate model for coarse-grained hemodynamics simulations. Phys. Rev. E 82, 056710.
Kilimnik, A., Mao, W. & Alexeev, A. 2011 Inertial migration of deformable capsules in channel flow. Phys. Fluids 23 (12), 123302.
Krishnan, G. P. & Leighton, D. T. Jr. 1995 Inertial lift on a moving sphere in contact with a plane wall in a shear flow. Phys. Fluids 7 (11), 25382545.
Kunert, C., Harting, J. & Vinogradova, O. I. 2010 Random-roughness hydrodynamic boundary conditions. Phys. Rev. Lett. 105 (1), 016001.
Ladd, A. J. C. & Verberg, R. 2001 Lattice–Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104 (5), 1191.
Liu, C., Hu, G., Jiang, X. & Sun, J. 2015 Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers. Lab on a Chip 15 (4), 11681177.
Liu, C., Xue, C., Sun, J. & Hu, G. 2016 A generalized formula for inertial lift on a sphere in microchannels. Lab on a Chip 16 (5), 884892.
Loisel, V., Abbas, M., Masbernat, O. & Climent, E. 2015 Inertia-driven particle migration and mixing in a wall-bounded laminar suspension flow. Phys. Fluids 27 (12), 123304.
Martel, J. M. & Toner, M. 2014 Inertial focusing in microfluidics. Annu. Rev. Biomed. Engng 16, 371396.
Matas, J.-P., Morris, J. F. & Guazzelli, E. 2004 Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515, 171195.
Matas, J.-P., Morris, J. F. & Guazzelli, E. 2009 Lateral force on a rigid sphere in large-inertia laminar pipe flow. J. Fluid Mech. 621, 5967.
Miura, K., Itano, T. & Sugihara-Seki, M. 2014 Inertial migration of neutrally buoyant spheres in a pressure-driven flow through square channels. J. Fluid Mech. 749, 320330.
Morita, Y., Itano, T. & Sugihara-Seki, M. 2017 Equilibrium radial positions of neutrally buoyant spherical particles over the circular cross-section in Poiseuille flow. J. Fluid Mech. 813, 750767.
Neto, C., Evans, D., Bonaccurso, E., Butt, H. J. & Craig, V. J. 2005 Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 28592897.
Pasol, L., Sellier, A. & Feuillebois, F. 2006 A sphere in a second degree polynomial creeping flow parallel to a wall. Q. J. Mech. Appl. Maths 59 (4), 587614.
Pimponi, D., Chinappi, M., Gualtieri, P. & Casciola, C. M. 2014 Mobility tensor of a sphere moving on a superhydrophobic wall: application to particle separation. Microfluid. Nanofluid. 16, 571585.
Reschiglian, P., Melucci, D., Torsi, G. & Zattoni, A. 2000 Standardless method for quantitative particle-size distribution studies by gravitational field-flow fractionation. Application to silica particles. Chromatographia 51 (1–2), 8794.
Saffman, P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400.
Schmieschek, S., Belyaev, A. V., Harting, J. & Vinogradova, O. I. 2012 Tensorial slip of super-hydrophobic channels. Phys. Rev. E 85, 016324.
Schonberg, J. A. & Hinch, E. J. 1989 Inertial migration of a sphere in Poiseuille flow. J. Fluid Mech. 203, 517524.
Segré, G. & Silberberg, A. 1962 Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation. J. Fluid Mech. 14, 136157.
Vasseur, P. & Cox, R. G. 1976 The lateral migration of a spherical particle in two-dimensional shear flows. J. Fluid Mech. 78, 385413.
Vinogradova, O. I. 1996 Hydrodynamic interaction of curved bodies allowing slip on their surfaces. Langmuir 12, 59635968.
Vinogradova, O. I. 1999 Slippage of water over hydrophobic surfaces. Intl J. Miner. Process. 56, 3160.
Vinogradova, O. I. & Belyaev, A. V. 2011 Wetting, roughness and flow boundary conditions. J. Phys.: Condens. Matter 23, 184104.
Wakiya, S., Darabaner, C. L. & Mason, S. G. 1967 Particle motions in sheared suspensions XXI: interactions of rigid spheres (theoretical). Rheol. Acta 6 (3), 264273.
Yahiaoui, S. & Feuillebois, F. 2010 Lift on a sphere moving near a wall in a parabolic flow. J. Fluid Mech. 662, 447474.
Zhang, J., Yan, S., Alici, G., Nguyen, N.-T., Di Carlo, D. & Li, W. 2014 Real-time control of inertial focusing in microfluidics using dielectrophoresis (dep). RSC Adv. 4 (107), 6207662085.
Zhang, J., Yan, S., Yuan, D., Alici, G., Nguyen, N.-T., Warkiani, M. E. & Li, W. 2016 Fundamentals and applications of inertial microfluidics: a review. Lab on a Chip 16 (1), 1034.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed