Skip to main content
×
×
Home

Inertial waves in a differentially rotating spherical shell

  • C. Baruteau (a1) and M. Rieutord (a2)
Abstract
Abstract

We investigate the properties of small-amplitude inertial waves propagating in a differentially rotating incompressible fluid contained in a spherical shell. For cylindrical and shellular rotation profiles and in the inviscid limit, inertial waves obey a second-order partial differential equation of mixed type. Two kinds of inertial modes therefore exist, depending on whether the hyperbolic domain where characteristics propagate covers the whole shell or not. The occurrence of these two kinds of inertial modes is examined, and we show that the range of frequencies at which inertial waves may propagate is broader than with solid-body rotation. Using high-resolution calculations based on a spectral method, we show that, as with solid-body rotation, singular modes with thin shear layers following short-period attractors still exist with differential rotation. They exist even in the case of a full sphere. In the limit of vanishing viscosities, the width of the shear layers seems to weakly depend on the global background shear, showing a scaling in ${E}^{1/ 3} $ with the Ekman number $E$ , as in the solid-body rotation case. There also exist modes with thin detached layers of width scaling with ${E}^{1/ 2} $ as Ekman boundary layers. The behaviour of inertial waves with a corotation resonance within the shell is also considered. For cylindrical rotation, waves get dramatically absorbed at corotation. In contrast, for shellular rotation, waves may cross a critical layer without visible absorption, and such modes can be unstable for small enough Ekman numbers.

Copyright
Corresponding author
Email address for correspondence: C.Baruteau@damtp.cam.ac.uk
References
Hide All
Barker A. J. & Ogilvie G. I. 2010 On internal wave breaking and tidal dissipation near the centre of a Solar-type star. Mon. Not. R. Astron. Soc. 404, 18491868.
Bryan G. 1889 The waves on a rotating liquid spheroid of finite ellipticity. Phil. Trans. R. Soc. Lond. 180, 187219.
Cartan E. 1922 Sur les petites oscillations d’une masse fluide. Bull. Sci. Math. 46, 317352; 356–369.
Dintrans B., Rieutord M. & Valdettaro L. 1999 Gravito-inertial waves in a rotating stratified sphere or spherical shell. J. Fluid Mech. 398, 271297.
Fricke K. 1968 Instabilität stationärer Rotation in Sternen. ZAp 68, 317.
Friedlander S. 1982 Turning surface behaviour for internal waves subject to general gravitational fields. Geophys. Astrophys. Fluid Dyn. 21, 189200.
Friedlander S. 1987 Hydromagnetic waves in the Earth’s fluid core. Geophys. Astrophys. Fluid Dyn. 39, 315333.
Friedlander S. & Siegmann W. L. 1982 Internal waves in a rotating stratified fluid in an arbitrary gravitational field. Geophys. Astrophys. Fluid Dyn. 19, 267291.
Goldreich P. & Schubert G. 1967 Differential rotation in stars. Astrophys. J. 150, 571.
Goodman J. & Lackner C. 2009 Dynamical tides in rotating planets and stars. ApJ 696, 20542067.
Greenspan H. P. 1969 The Theory of Rotating Fluids. Cambridge University Press.
Hollerbach R. & Kerswell R. 1995 Oscillatory internal shear layers in rotating and precessing flows. J. Fluid Mech. 298, 327339.
Kelley D., Triana S. A., Zimmerman D., Tilgner A. & Lathrop D. 2007 Inertial waves driven by differential rotation in a planetary geometry. Geophys. Astrophys. Fluid Dyn. 101, 469487.
Kelley D. H., Triana S. A., Zimmerman D. S. & Lathrop D. P. 2010 Selection of inertial modes in spherical Couette flow. Phys. Rev. E 81 (2), 026311.
Kelvin Lord 1880 Vibrations of a columnar vortex. Phil. Mag. 10, 155168.
Kerswell R. 1995 On the internal shear layers spawned by the critical regions in oscillatory Ekman boundary layers. J. Fluid Mech. 298, 311325.
Latter H. N. & Balbus S. A. 2009 Inertial waves near corotation in three-dimensional hydrodynamical discs. Mon. Not. R. Astron. Soc. 399, 10581073.
Le Dizès S. 2004 Viscous critical-layer analysis of vortex normal modes. Stud. Appl. Maths 112, 315332.
Maas L. & Lam F.-P. 1995 Geometric focusing of internal waves. J. Fluid Mech. 300, 141.
Nelson R. P., Gressel O. & Umurhan O. M. 2012 Linear and nonlinear evolution of the vertical shear instability in accretion discs. Mon. Not. R. Astron. Soc. arXiv:1209.2753.
Ogilvie G. I. 2005 Wave attractors and the asymptotic dissipation rate of tidal disturbances. J. Fluid Mech. 543, 1944.
Ogilvie G. 2009 Tidal dissipation in rotating fluid bodies: a simplified model. Mon. Not. R. Astron. Soc. 396, 794806.
Ogilvie G. I. & Lin D. N. C. 2004 Tidal dissipation in rotating giant planets. ApJ 610, 477509.
Ogilvie G. I. & Lin D. N. C. 2007 Tidal dissipation in rotating solar-type stars. Astrophys. J. 661, 11801191.
Rieutord M. 1987 Linear theory of rotating fluids using spherical harmonics part I: steady flows. Geophys. Astrophys. Fluid Dyn. 39, 163182.
Rieutord M. 2006 The dynamics of the radiative envelope of rapidly rotating stars. I. A spherical boussinesq model. A&A 451, 10251036.
Rieutord M., Georgeot B. & Valdettaro L. 2001 Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. J. Fluid Mech. 435, 103144.
Rieutord M., Triana S. A., Zimmerman D. S. & Lathrop D. P. 2012 Excitation of inertial modes in an experimental spherical Couette flow. Phys. Rev. E 86 (2), 026304.
Rieutord M. & Valdettaro L. 1997 Inertial waves in a rotating spherical shell. J. Fluid Mech. 341, 7799.
Rieutord M. & Valdettaro L. 2010 Viscous dissipation by tidally forced inertial modes in a rotating spherical shell. J. Fluid Mech. 643, 363394.
Rieutord M., Valdettaro L. & Georgeot B. 2002 Analysis of singular inertial modes in a spherical shell: the slender toroidal shell model. J. Fluid Mech. 463, 345360.
Stewartson K. 1971 On trapped oscillations of a rotating fluid in a thin spherical shell. Tellus 23, 506510.
Stewartson K. 1972a On trapped oscillations of a rotating fluid in a thin spherical shell II. Tellus 24, 283287.
Stewartson K. 1972b On trapped oscillations in a slightly viscous rotating fluid. J. Fluid Mech. 54, 749761.
Stewartson K. & Rickard J. 1969 Pathological oscillations of a rotating fluid. J. Fluid Mech. 35, 759773.
Valdettaro L., Rieutord M., Braconnier T. & Fraysse V. 2007 Convergence and round-off errors in a two-dimensional eigenvalue problem using spectral methods and Arnoldi–Chebyshev algorithm. J. Comput. Appl. Math. 205, 382393.
Wu Y. 2005 Origin of tidal dissipation in Jupiter. II. The value of inline-graphic $Q$ . Astrophys. J. 635, 688710.
Zahn J.-P. 1992 Circulation and turbulence in rotating stars. A&A 265, 115.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 103 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st January 2018. This data will be updated every 24 hours.