Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-04T22:57:52.919Z Has data issue: false hasContentIssue false

Influence of end plates and free ends on the shedding frequency of circular cylinders

Published online by Cambridge University Press:  20 April 2006

Detlev Gerich
Affiliation:
Max-Planck-Institut für Strömungsforschung, D 3400 Göttingen, Federal Republic of Germany
Helmut Eckelmann
Affiliation:
Max-Planck-Institut für Strömungsforschung, D 3400 Göttingen, Federal Republic of Germany

Abstract

The cylinder end boundaries, whether they be end plates or simple free ends, alter the vortex-shedding mechanism near these boundaries. This effect has in the past usually been overlooked. In a region near an end plate or a free end (ranging from 6 to 15 cylinder diameters in length), the shedding frequency f2 is found to be 10–15% less than the regular Strouhal frequency fs. The latter frequency is observed over the remaining cylinder length. The simultaneous occurrence of two frequencies results in a beat frequency, which is best observed at the junction of the two regions characterized by fs and f2 respectively. A third frequency f3 with fs > f3 > f2 is observed over the entire cylinder length when the cylinder is bounded by two end plates less than 20 to 30 cylinder diameters apart. Here the critical Reynolds number for the onset of shedding is shifted to about 60 and the laminar Reynolds-number range is extended from about 150 to about 250.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berger, E. 1964 Z. Flugwiss 12, 4159.
Berger, E. & Wille, R. 1972 Ann. Rev. Fluid Mech. 4, 312340.
Friehe, C. A. 1980 J. Fluid Mech. 100, 237241.
Gaster, M. 1969 J. Fluid Mech. 38, 565576.
Gaster, M. 1971 J. Fluid Mech. 46, 749756.
Gerrard, J. H. 1966 J. Fluid Mech. 25, 143164.
Gerrard, J. H. 1978 Phil. Trans. R. Soc. Lond. A 288, 351381.
Kohan, S. & Schwarz, W. H. 1973 Phys. Fluids 16, 15281529.
Kovasznay, L. S. G. 1949 Proc. R. Soc. Lond. A 198, 174190.
Morkovin, M. V. 1964 In Proc. A.S.M.E. Symp. on Fully Separated Flows, New York, pp. 102–119.
Nishioka, M. & Sato, H. 1974 J. Fluid Mech. 65, 67112.
Okude, M. 1978 J. Japan Soc. Aero. Space Sci. 26, 198206 (in Japanese).
Roshko, A. 1954 NACA Rep. no. 1191.
Shair, F. H., Grove, A. S., Petersen, E. E. & Acrivos, A. A. 1963 J. Fluid Mech. 17, 546550.
Slaouti, A. & Gerrard, J. H. 1981 J. Fluid Mech. 112, 297314.
Stansby, P. K. 1974 Aero. J. 78, 3637.
Strouhal, V. 1878 Ann. Phys. Chem., Neue Folge 5, 216251.
Taneda, S. 1952 Rep. Res. Inst. Appl. Mech. 1, 131143.
Tritton, D. J. 1959 J. Fluid Mech. 6, 547567.
Tritton, D. J. 1971 J. Fluid Mech. 45, 203208.