Skip to main content Accessibility help
×
Home

Initiation of diffusive layering by time-dependent shear

  • Justin M. Brown (a1) and Timour Radko (a1)

Abstract

The Arctic halocline is generally stable to the development of double-diffusive and dynamic instabilities – the two major sources of small-scale mixing in the mid-latitude oceans. Despite this, observations show the abundance of double-diffusive staircases in the Arctic Ocean, which suggests the presence of some destabilizing process facilitating the transition from smooth-gradient to layered stratification. Recent studies have shown that an instability can develop in such circumstances if weak static shear is present even when the flow is dynamically and diffusively stable. However, the impact of oscillating shear, associated with the presence of internal gravity waves, has not yet been addressed for the diffusive case. Through two-dimensional simulations of diffusive convection, we have investigated the impact of the magnitude and frequency of externally forced oscillatory shear on the thermohaline-shear instability. Simulations with stochastic shear – characterized by a continuous spectrum of frequencies from inertial to buoyancy – indicate that thermohaline layering does occur due to the presence of destabilizing modes (oscillations of near the buoyancy frequency). These simulations show that such layers appear as well-defined steps in the temperature and salinity profiles. Thus, the thermohaline-shear instability is a plausible mechanism for staircase formation in the Arctic and merits substantial future study.

Copyright

Corresponding author

Email address for correspondence: jmbrown2@nps.edu

References

Hide All
Baines, P. G. G. & Gill, A. E. 1969 On thermohaline convection with linear gradients. J. Fluid Mech. 37 (02), 289306.
Bebieva, Y. & Timmermans, M.-L. 2017 The relationship between double-diffusive intrusions and staircases in the arctic ocean. J. Phys. Oceanogr. 47 (4), 867878.
Carpenter, J. R., Sommer, T. & Wüest, A. 2012 Simulations of a double-diffusive interface in the diffusive convection regime. J. Fluid Mech. 711, 411436.
Cole, S. T., Timmermans, M.-L., Toole, J. M., Krishfield, R. A. & Thwaites, F. T. 2014 Ekman veering, internal waves, and turbulence observed under arctic sea ice. J. Phys. Oceanogr. 44 (5), 13061328.
Crapper, P. F. 1976 Fluxes of heat and salt across a diffusive interface in the presence of grid generated turbulence. Intl J. Heat Mass Transfer 19 (12), 13711378.
Flanagan, J. D., Lefler, A. S. & Radko, T. 2013 Heat transport through diffusive interfaces. Geophys. Res. Lett. 40 (10), 24662470.
Flanagan, J. D., Radko, T., Shaw, W. J. & Stanton, T. P. 2014 Dynamic and double-diffusive instabilities in a weak pycnocline. Part II. Direct numerical simulations and flux laws. J. Phys. Oceanogr. 44 (8), 19922012.
Garaud, P. 2017 The formation of diffusive staircases. J. Fluid Mech. 812, 14.
Garrett, C. & Munk, W. 1972 Space–time scales of internal waves. Geophys. Astrophys. Fluid Dyn. 3 (1), 225264.
Guthrie, J. D., Morison, J. H. & Fer, I. 2013 Revisiting internal waves and mixing in the Arctic Ocean. J. Geophys. Res. Oceans 118 (8), 39663977.
Huppert, H. E. 1971 On the stability of a series of double-diffusive layers. Deep-Sea Res. Oceanogr. Abstr. 18 (10), 10051021.
Huppert, H. E. & Linden, P. F. 1979 On heating a stable salinity gradient from below. J. Fluid Mech. 95 (03), 431464.
Levine, M. D., Paulson, C. A. & Morison, J. H. 1987 Observations of internal gravity waves under the Arctic pack ice. J. Geophys. Res. Oceans 92 (C), 779782.
Malkus, W. V. R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225 (1161), 196212.
Merryfield, W. J. 2000 Origin of thermohaline staircases. J. Phys. Oceanogr. 30 (5), 10461068.
Molemaker, M. J. & Dijkstra, H. A. 1997 The formation and evolution of a diffusive interface. J. Fluid Mech. 331, 199229.
Neal, V. T., Neshyba, S. & Denner, W. 1969 Thermal stratification in the arctic ocean. Science 166 (3903), 373374.
Neshyba, S., Neal, V. T. & Denner, W. 1971 Temperature and conductivity measurements under Ice Island T-3. J. Geophys. Res. 76 (3), 81078120.
Noguchi, T. & Niino, H. 2010 Multi-layered diffusive convection. Part 2. Dynamics of layer evolution. J. Fluid Mech. 651, 443464.
Osborn, T. R. & Cox, C. S. 1972 Oceanic fine structure. Geophys. Astrophys. Fluid Dyn. 3 (1), 321345.
Perkin, R. G. & Lewis, E. L. 1984 Mixing in the West spitsbergen current. Am. Meteorol. Soc. 14 (8), 13151325.
Radko, T. 2003 A mechanism for layer formation in a double-diffusive fluid. J. Fluid Mech. 497, 365380.
Radko, T. 2005 What determines the thickness of layers in a thermohaline staircase? J. Fluid Mech. 523, 7998.
Radko, T. 2013 Double-diffusive Convection. Cambridge University Press.
Radko, T. 2016 Thermohaline layering in dynamically and diffusively stable shear flows. J. Fluid Mech. 805, 147170.
Radko, T., Ball, J., Colosi, J. & Flanagan, J. D. 2015 Double-diffusive convection in a stochastic shear. J. Phys. Oceanogr. 45 (12), 31553167.
Rudels, B., Kuzmina, N., Schauer, U. E., Stipa, T. & Zhurbas, V. 2009 Double-diffusive convection and interleaving in the arctic ocean – distribution and importance. Geophysica 45 (1–2), 199213.
Shibley, N. C., Timmermans, M.-L., Carpenter, J. R. & Toole, J. M. 2017 Spatial variability of the Arctic Ocean’s double-diffusive staircase. J. Geophys. Res. Oceans 122 (2), 980994.
Shraiman, B. I. & Siggia, E. D. 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42 (6), 36503653.
Stern, M. E. 1960 The ‘Salt-Fountain’ and thermohaline convection. Tellus A 12 (2), 172175.
Timmermans, M.-L., Garrett, C. & Carmack, E. 2003 The thermohaline structure and evolution of the deep waters in the Canada Basin, Arctic Ocean. Deep Sea Res. 50 (10–11), 13051321.
Timmermans, M.-L., Toole, J., Krishfield, R. & Winsor, P. 2008 Ice-Tethered Profiler observations of the double-diffusive staircase in the Canada Basin thermocline. J. Geophys. Res. 113 (C7), C00A02.
Traxler, A. L., Stellmach, S., Garaud, P., Radko, T. & Brummell, N. H. 2011 Dynamics of fingering convection. Part 1 Small-scale fluxes and large-scale instabilities. J. Fluid Mech. 677, 530553.
Turner, J. S. 1965 The coupled turbulent transports of salt and and heat across a sharp density interface. Intl J. Heat Mass Transfer 8 (5), 759767.
Turner, J. S. 2010 The melting of ice in the arctic ocean: the influence of double-diffusive transport of heat from below. J. Phys. Oceanogr. 40 (1), 249256.
Turner, J. S. & Stommel, H. 1964 A new case of convection in the presence of combined vertical salinity and temperature gradients. Proc. Nat. Acad. Sci. 52 (1), 4953.
Walin, G. 1964 Note on the stability of water stratified by both salt and heat. Tellus A 16 (3), 389393.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed