Skip to main content Accessibility help
×
Home

Instability of a chemically dense layer heated from below and overlain by a deep less viscous fluid

  • CLAUDE JAUPART (a1), PETER MOLNAR (a2) and ELIZABETH COTTRELL (a3)

Abstract

Near the threshold of stability, an intrinsically denser fluid heated from below and underlying an isothermal fluid can undergo oscillatory instability, whereby perturbations to the interface between the fluids rise and fall periodically, or it can be mechanically stable and in thermal equilibrium with heat flux extracted by small-scale convection at the interface. Both the analysis of marginal stability and laboratory experiments in large-Prandtl-number fluids show that the critical Rayleigh number, scaled to parameters of the lower fluid, depends strongly on the buoyancy number, B, the ratio of the intrinsic density difference between the fluids and the maximum density difference due to thermal expansion. For small buoyancy number, B < ∼ 0.1, the critical Rayleigh number, RaC, for oscillatory instability is small RaC < ∼50, and increases steeply for B ∼ 0.25. For B > ∼ 0.5 and RaC > ∼1100, a second form of instability develops, in which convection is confined to the lower layer. The analysis of marginal stability for layers with very different viscosities shows further that two modes of oscillatory instability exist, depending on the value of B. For B < 0.275, the entire lower layer is unstable, and wavelengths of perturbations that grow fastest are much larger than its thickness. For B > 0.275, only the bottom of the lower layer is buoyant, and instability occurs by its penetrating the upper part of the lower layer; the wavelengths of the perturbations that grow fastest are much smaller than those for B < 0.275, and the maximum frequency of oscillatory instability is much larger than that for B < 0.275. Oscillations in the laboratory experiments show that the heights to which plumes of the lower fluid rise into the upper one increase with the Rayleigh number. Moreover, in the finite-amplitude regime, the oscillation is not symmetrical. Plumes that reach maximum heights fall quickly, folding on themselves and entraining some of the upper fluid. Hence oscillatory convection provides a mechanism for mixing the fluids. Applied to the Earth, these results bear on the development of continental lithosphere, whose mantle part is chemically different from the underlying asthenosphere. As shown by the laboratory experiments and stability analysis, the lithosphere can be mechanically stable and in thermal equilibrium such that heat supplied by small-scale convection at the top of the asthenosphere is conducted through it. The lithosphere seems to have developed in a state near that of instability with different thicknesses depending on its intrinsic buoyancy. It may have grown not only by chemical differentiation during melting, but also by oscillatory convection entraining chemically denser material from the asthenosphere.

Copyright

References

Hide All
Carlson, R. W., Boyd, F. R., Shirey, S. B., Janney, P. E., Grove, T. L., Bowring, S. A., Schmitz, M. D., Dann, J. C., Pearson, D. G., Bell, D. R., Gurney, J. J., Richardson, S. H., Tredoux, M., Menzies, A. H., Hart, R. J., Wilson, A. H. & Moser, D. 2000 Continental growth, preservation and modification in southern Africa, GSA Today 10, 16.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Cottrell, E., Jaupart, C. & Molnar, P. 2004 Marginal stability of thick continental lithosphere, Geophys. Res. Lett. 31, L18612, doi:10.1029/2004GL020332.
Currie, I. G. 1967 The effect of heating rate on the stability of stationary fluids. J. Fluid Mech. 29, 337347.
Davaille, A. 1999a Two-layer thermal convection in miscible viscous fluids. J. Fluid Mech. 379, 223253.
Davaille, A. 1999b Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402, 756760.
Davaille, A. & Jaupart, C. 1993 Transient high-Rayleigh-number thermal convection with large viscosity variations. J. Fluid Mech. 250, 141166.
Davaille, A. & Jaupart, C. 1994 Onset of thermal convection in fluids with temperature-dependent viscosity: application to the upper mantle. J. Geophys. Res. 99, 19 85319 866.
Davaille, A., Girard, F. & Le Bars, M. 2002 How to anchor hotspots in a convecting mantle? Earth Planet. Sci. Lett. 203, 621634.
Deardorff, J. W., Willis, G. E. & Lilly, D. K. 1969 Laboratory experiments of non-steady penetrative convection. J. Fluid Mech. 35, 731.
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
Doin, M.-P., Fleitout, L. & McKenzie, D. 1996 Geoid anomalies and the structure of continental and oceanic lithospheres. J. Geophys. Res. 101, 16 11916 135.
Eglington, B. M. & Armstrong, R. A. 2004 The Kaapvaal Craton and adjacent orogens, southern Africa: a geochronological database and overview of the geological development of the craton. South African J. Geol. 107, 1332.
Gonnermann, H. M., Manga, M. & Jellinek, A. M. 2002 Dynamics and longevity of an initially stratified mantle. Geophys. Res. Lett. 29 (10), 1399, doi:10.1029/2002GL01485.
Gung, Y., Panning, M. & Romanowicz, B. 2003 Global anisotropy and the thickness of continents. Nature, 422, 707711.
Hirth, G. & Kohlstedt, D. L. 1996 Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93108.
Houseman, G. A. & Houseman, D. K. 2006 Stability and periodicity in the thermal and mechanical evolution of continental tectonics. Geophys. J. Intl (submitted).
Howard, L. N. 1966 Convection at high Rayleigh numbers. In Proc. 11th Intl Congress of Applied Maths, (ed. Görtler, H.). pp. 11091115. Springer.
Hsui, A. T. & Riahi, D. N. 2001 Onset of thermal chemical convection with crystallization and its geological implications. Geochem. Geophys. Geosyst. 2 (4), doi: 10.1029/2000GC000075.
Jaupart, C. & Mareschal, J. C. 1999 The thermal structure and thickness of continental roots. Lithos 48, 93114.
Jaupart, C. & Tait, S. 1995 The dynamics of differentiation in magma chambers. J. Geophys. Res. 100, 17 61517 636.
Jaupart, C., Mareschal, J. C., Guillou-Frottier, L. & Davaille, A. 1998 Heat flow and thickness of the lithosphere in the Canadian Shield. J. Geophys. Res. 103, 15 26915 286.
Jellinek, A. M. & Manga, M. 2002 The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature 418, 760763.
Jellinek, A. M. & Manga, M. 2004 Links between long-lived hot spots, mantle plumes, D'', and plate tectonics. Rev. Geophys. 42, RG3002, doi:10.1029/2003RG000144.
Jordan, T. H. 1975 The continental tectosphere. Rev. Geophys. Space Phys. 13, 112.
Jordan, T. H. 1978 Composition and development of the continental tectosphere. Nature 274, 544548.
Jordan, T. H. 1988 Structure and formation of the continental tectosphere. J. Petrol. Special Lithosphere Issue, pp. 11–37.
Kohlstedt, D. L., Evans, B. & Mackwell, S. J. 1995 Strength of the lithosphere: constraints imposed by laboratory experiments. J. Geophys. Res. 100, 17 58717 602.
Lay, T., Garnero, E. J., Young, C. J. & Gaherty, J. B. 1997 Scale length of shear velocity heterogeneity at the base of the mantle from S wave differential travel times. J. Geophys. Res. 102, 98879909.
Le Bars, M. & Davaille, A. 2002 Stability of thermal convection in two superimposed miscible viscous fluids. J. Fluid Mech. 471, 339363.
Le Bars, M. & Davaille, A. 2004 Large interface deformation in two-layer thermal convection of miscible viscous fluids. J. Fluid Mech. 499, 75110.
Lister, C. R. B., Sclater, J. G., Davis, E. E., Villinger, H. & Nagihara, S. 1990 Heat flow maintained in ocean basins of great age: investigations in the north-equatorial Pacific. Geophys. J. Intl 102, 603630.
McNamara, A. K. & Zhong, S. 2004a Thermochemical structures within a spherical mantle: Superplumes or piles? J. Geophys. Res. 109, B07402, doi:10.1029/2003JB002847.
McNamara, A. K & Zhong, S. 2004b The influence of thermochemical convection on the fixity of mantle plumes. Earth Planet. Sci. Lett. 222, 485500.
McNamara, A. K. & Zhong, S. 2005 Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 11361139.
Namiki, A. 2003 Can the mantle entrain D”? J. Geophys. Res. 108 (B10), 2487, doi:10.1029/2002JB002315.
Namiki, A. & Kurita, K. 2003 Heat transfer and interfacial temperature of two-layered convection: Implications for the D''-mantle coupling. Geophys. Res. Lett. 30 (1), 1023, doi:10.1029/2002GL015809.
Olson, P. & Kincaid, C. 1991 Experiments on the interaction of thermal convection and compositional layering at the base of the mantle. J. Geophys. Res. 96, 43474354.
Parsons, B. & McKenzie, D. 1978 Mantle convection and the thermal structure of the plates. J. Geophys. Res. 83, 44854496.
Parsons, B. & Sclater, J. G. 1977 An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res. 82, 803827.
Pearson, D. G., Carlson, R. W., Shirey, S. B., Boyd, F. R. & Nixon, P. H. 1995 The stabilisation of Archaean lithospheric mantle: a Re–Os isotope study of peridotite xenoliths from the Kaapvaal craton. Earth Planet. Sci. Lett. 134, 341357.
Pellew, A. & Southwell, R. V. 1940 On maintained convective motion in a fluid heated from below. Proc. Roy. Soc. A 176, 312343.
Poudjom Djomani, Y. H., O'Reilly, S. Y., Griffin, W. L. & Morgan, P. 2001 The density structure of subcontinental lithosphere through time. Earth Planet. Sci. Lett. 184, 605621.
Prendergast, M. D. 2004 The Bulawayan Supergroup: a late Archaean passive margin-related large igneous province in the Zimbabwe craton. J. geol. Soc., Lond. 161, 431445.
Richardson, S. H., Gurney, J. J., Erlank, E. J. & Harris, J. W. 1984 Origin of diamonds in old enriched mantle. Nature 310, 198202.
Richardson, S. H., Shirey, S. B. & Harris, J. W. 2004 Episodic diamond genesis at Jwaneng, Botswana, and implications for Kaapvaal craton evolution. Lithos 77, 143154.
Richter, F. M. & Johnson, C. E. 1974 Stability of a chemically layered mantle. J. Geophys. Res. 79, 16351639.
Rudnick, R. L., McDonough, W. F. & O'Connell, R. J. 1998 Thermal structure, thickness and composition of continental lithosphere. Chem. Geol. 145, 399416.
Shimizu, K., Nakamura, E., Kobayashi, K. & Maruyama, S. 2004 Discovery of Archean continental and mantle fragments inferred from xenocrysts in komatiites, the Belingwe greenstone belt, Zimbabwe. Geology 32, 285288.
Shirey, S. B., Harris, J. W., Richardson, S. H., Fouch, M. J., James, D. E., Cartigny, P., Deines, P. & Viljoen, F. 2002 Diamond genesis, seismic structure & evolution of the Kaapvaal-Zimbabwe craton. Science 297, 16831686.
Shirey, S. B., Harris, J. W., Richardson, S. H., Fouch, M. J., James, D. E., Cartigny, P., Deines, P. & Viljoen, F. 2003 Regional patterns in the paragenesis and age of inclusions in diamond, diamond composition & the lithospheric seismic structure of Southern Africa. Lithos 71, 243258.
Tackley, P. J. 1998 Three-dimensional simulations of mantle convection with a thermochemical CMB boundary layer: D"? In The Core–Mantle Boundary Region (ed. Gurnis, M., Wysession, M. E., Knittle, E. & Buffett, B. A.), pp. 231253, American Geophysical Union.
Tait, S. & Jaupart, C. 1989 Compositional convection in viscous melts. Nature 338, 571574.
Townsend, A. A. 1964 Natural convection in water over an ice surface. Q. J. R. Met. Soc. 90, 248259.
Wenzel, M. J., Manga, M. & Jellinek, A. M. 2004 Tharsis as a consequence of Mars' dichotomy and layered mantle. Geophys. Res. Lett. 31, L04702, doi:10.1029/2003GL019306.
White, D. B. 1988 The planforms and onset of convection with a temperature-dependent viscosity. J. Fluid Mech 191, 247286.
Worster, M. G. 2004 Time-dependent fluxes across double-diffusive interfaces. J. Fluid Mech. 505, 287307.
Zaranek, S. E. & Parmentier, E. M. 2004 Convective cooling of an initially stably stratified fluid with temperature-dependent viscosity: implications for the role of solid-state convection in planetary evolution. J. Geophys. Res. 109, B03409, doi:10.1029/2003JB002462.
Zhong, S. & Hager, B. H. 2003 Entrainment of a dense layer by thermal plumes. Geophys. J. Int. 154, 666676.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

Instability of a chemically dense layer heated from below and overlain by a deep less viscous fluid

  • CLAUDE JAUPART (a1), PETER MOLNAR (a2) and ELIZABETH COTTRELL (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.