Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-30T03:11:38.277Z Has data issue: false hasContentIssue false

Instability of a dusty Kolmogorov flow

Published online by Cambridge University Press:  26 November 2021

Alessandro Sozza*
Affiliation:
Department of Physics and INFN, University of Torino, via P. Giuria, 10125 Torino, Italy Istituto dei Sistemi Complessi, ISC-CNR, via dei Taurini 19, 00185 Roma, Italy INFN sezione Roma 2 “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma, Italy Laboratoire de Physique, UMR 5672, École Normale Supérieure de Lyon 46 Allée d'Italie, 69007 Lyon, France
Massimo Cencini
Affiliation:
Istituto dei Sistemi Complessi, ISC-CNR, via dei Taurini 19, 00185 Roma, Italy INFN sezione Roma 2 “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma, Italy
Stefano Musacchio
Affiliation:
Department of Physics and INFN, University of Torino, via P. Giuria, 10125 Torino, Italy
Guido Boffetta
Affiliation:
Department of Physics and INFN, University of Torino, via P. Giuria, 10125 Torino, Italy
*
Email address for correspondence: asozza.ph@gmail.com

Abstract

Suspended particles can significantly alter the fluid properties and, in particular, can modify the transition from laminar to turbulent flow. We investigate the effect of heavy particle suspensions on the linear stability of the Kolmogorov flow by means of a multiple-scale expansion of the Eulerian model originally proposed by Saffman (J. Fluid Mech., vol. 13, issue 1, 1962, pp. 120–128). We find that, while at small Stokes numbers particles always destabilize the flow (as already predicted by Saffman in the limit of very thin particles), at sufficiently large Stokes numbers the effect is non-monotonic in the particle mass fraction and particles can both stabilize and destabilize the flow. Numerical analysis is used to validate the analytical predictions. We find that in a region of the parameter space the multiple-scale expansion overestimates the stability of the flow and that this is a consequence of the breakdown of the scale separation assumptions.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, N., Choueiri, G.H. & Hof, B. 2019 Transition to turbulence in particle laden flows. Phys. Rev. Lett. 122 (11), 114502.CrossRefGoogle ScholarPubMed
Ardekani, M.N., Costa, P., Breugem, W.-P., Picano, F. & Brandt, L. 2017 Drag reduction in turbulent channel flow laden with finite-size oblate spheroids. J. Fluid Mech. 816, 4370.CrossRefGoogle Scholar
Armitage, P.J. 2011 Dynamics of protoplanetary disks. Annu. Rev. Astron. Astrophys. 49, 195.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Balmforth, N.J. & Young, Y.N. 2002 Stratified Kolmogorov flow. J. Fluid Mech. 450, 131.CrossRefGoogle Scholar
Bec, J., Laenen, F. & Musacchio, S. 2017 Dusty turbulence. arXiv:1702.06773.Google Scholar
Bensoussan, A., Lions, J.-L. & Papanicolaou, G. 2011 Asymptotic Analysis for Periodic Structures, vol. 374. American Mathematical Society.Google Scholar
Bercovici, D. & Michaut, C. 2010 Two-phase dynamics of volcanic eruptions: compaction, compression and the conditions for choking. Geophys. J. Intl 182 (2), 843864.CrossRefGoogle Scholar
Bistagnino, A., Boffetta, G., Celani, A., Mazzino, A., Puliafito, A. & Vergassola, M. 2007 Nonlinear dynamics of the viscoelastic Kolmogorov flow. J. Fluid Mech. 590, 61.CrossRefGoogle Scholar
Boffetta, G., Celani, A. & Mazzino, A. 2005 Drag reduction in the turbulent Kolmogorov flow. Phys. Rev. E 71 (3), 036307.CrossRefGoogle ScholarPubMed
Burns, P. & Meiburg, E. 2015 Sediment-laden fresh water above salt water: nonlinear simulations. J. Fluid Mech. 762, 156195.CrossRefGoogle Scholar
Capecelatro, J., Desjardins, O. & Fox, R.O. 2018 On the transition between turbulence regimes in particle-laden channel flows. J. Fluid Mech. 845, 499519.CrossRefGoogle Scholar
De Lillo, F., Cencini, M., Musacchio, S. & Boffetta, G. 2016 Clustering and turbophoresis in a shear flow without walls. Phys. Fluids 28 (3), 035104.CrossRefGoogle Scholar
Dubrulle, B. & Frisch, U. 1991 Eddy viscosity of parity-invariant flow. Phys. Rev. A 43, 53555364.CrossRefGoogle ScholarPubMed
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4), 309329.CrossRefGoogle Scholar
Fylladitakis, E.D. 2018 Kolmogorov flow: seven decades of history. J. Appl. Maths Phys. 6 (11), 2227.CrossRefGoogle Scholar
Gualtieri, P., Battista, F. & Casciola, C.M. 2017 Turbulence modulation in heavy-loaded suspensions of tiny particles. Phys. Rev. Fluids 2 (3), 034304.CrossRefGoogle Scholar
Horwitz, J.A.K. & Mani, A. 2016 Accurate calculation of Stokes drag for point-particle tracking in two-way coupled flows. J. Comput. Phys. 318, 85109.CrossRefGoogle Scholar
Hughes, D.W. & Tobias, S.M. 2001 On the instability of magnetohydrodynamic shear flows. Proc. R. Soc. Lond. A 457, 1365.CrossRefGoogle Scholar
Klinkenberg, J., De Lange, H.C. & Brandt, L. 2011 Modal and non-modal stability of particle-laden channel flow. Phys. Fluids 23, 064110.CrossRefGoogle Scholar
Legras, B., Villone, B. & Frisch, U. 1999 Dispersive stabilization of the inverse cascade for the Kolmogorov flow. Phys. Rev. Lett. 82, 4440.CrossRefGoogle Scholar
Li, D., Luo, K., Wang, Z., Xiao, W. & Fan, J. 2019 Drag enhancement and turbulence attenuation by small solid particles in an unstably stratified turbulent boundary layer. Phys. Fluids 31 (6), 063303.Google Scholar
Matas, J.P., Morris, J.F. & Guazzelli, E. 2003 Transition to turbulence in particulate pipe flow. Phys. Rev. Lett. 90 (1), 014501.CrossRefGoogle ScholarPubMed
Meshalkin, L.D. & Sinai, I.G. 1961 Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid. Z. Angew. Math. Mech. 25 (6), 17001705.CrossRefGoogle Scholar
Michael, D.H. 1964 The stability of plane Poiseuille flow of a dusty gas. J. Fluid Mech. 18 (1), 1932.CrossRefGoogle Scholar
Musacchio, S. & Boffetta, G. 2014 Turbulent channel without boundaries: the periodic Kolmogorov flow. Phys. Rev. E 89 (2), 023004.CrossRefGoogle ScholarPubMed
Pandey, V., Perlekar, P. & Mitra, D. 2019 Clustering and energy spectra in two-dimensional dusty gas turbulence. Phys. Rev. E 100, 013114.CrossRefGoogle ScholarPubMed
Rudyak, V.Y., Isakov, E.B. & Bord, E.G. 1997 Hydrodynamic stability of the Poiseuille flow of dispersed fluid. J. Aerosol Sci. 28 (1), 5366.CrossRefGoogle Scholar
Saffman, P.G. 1962 On the stability of laminar flow of a dusty gas. J. Fluid Mech. 13 (1), 120128.CrossRefGoogle Scholar
Shaw, R.A. 2003 Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35 (1), 183227.CrossRefGoogle Scholar
Sivashinsky, G.I. 1985 Weak turbulence in periodic flows. Physica D 17 (2), 243255.CrossRefGoogle Scholar
Sivashinsky, G. & Yakhot, V. 1985 Negative viscosity effect in large-scale flows. Phys. Fluids 28 (4), 10401042.CrossRefGoogle Scholar
Sozza, A., Cencini, M., Musacchio, S. & Boffetta, G. 2020 Drag enhancement in a dusty Kolmogorov flow. Phys. Rev. Fluids 5, 094302.CrossRefGoogle Scholar
Sproull, W.T. 1961 Viscosity of dusty gases. Nature 190 (4780), 976978.CrossRefGoogle Scholar
Squire, H.B. 1933 On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls. Proc. Math. Phys. Engng Sci. 142, 847.Google Scholar
Suri, B., Tithof, J., Mitchell, R. Jr, Grigoriev, R.O. & Schatz, M.F. 2014 Velocity profile in a two-layer Kolmogorov-like flow. Phys. Fluids 26 (5), 053601.CrossRefGoogle Scholar
Wilkinson, M. & Mehlig, B. 2005 Caustics in turbulent aerosols. Europhys. Lett. 71 (2), 186.CrossRefGoogle Scholar