Skip to main content Accessibility help
×
Home

Interface-resolved direct numerical simulations of sediment transport in a turbulent oscillatory boundary layer

  • Marco Mazzuoli (a1), Paolo Blondeaux (a1), Giovanna Vittori (a1), Markus Uhlmann (a2), Julian Simeonov (a3) and Joseph Calantoni (a3)...

Abstract

The flow within an oscillatory boundary layer, which approximates the flow generated by propagating sea waves of small amplitude close to the bottom, is simulated numerically by integrating the Navier–Stokes and continuity equations. The bottom is made up of spherical particles, free to move, which mimic sediment grains. The approach allows one to fully resolve the flow around the particles and to evaluate the forces and torques that the fluid exerts on their surface. Then, the dynamics of sediments is explicitly computed by means of the Newton–Euler equations. For the smallest value of the flow Reynolds number presently simulated, the flow regime turns out to fall in the intermittently turbulent regime such that turbulence appears when the free-stream velocity is close to its largest value but the flow recovers a laminar-like behaviour during the remaining phases of the cycle. For the largest value of the Reynolds number, turbulence is significant during almost the whole flow cycle. The evaluation of the sediment transport rate allows one to estimate the reliability of the empirical predictors commonly used to estimate the amount of sediments transported by sea waves. For large values of the Shields parameter, the sediment flow rate during the accelerating phases does not differ from that observed during the decelerating phases. However, for relatively small values of the Shields parameter, the amount of moving particles depends not only on the bottom shear stress but also on flow acceleration. Moreover, the numerical results provide information on the role that turbulent eddies have on sediment dynamics.

Copyright

Corresponding author

Email address for correspondence: Marco.Mazzuoli@unige.it

References

Hide All
van der A, D. A., O’Donoghue, T., Davies, A. G. & Ribberink, J. S. 2011 Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow. J. Fluid Mech. 684, 251283.
Akhavan, R., Kamm, R. D. & Shapiro, A. H. 1991 An investigation of transition to turbulence in bounded oscillatory Stokes flows. Part 1. Experiments. J. Fluid Mech. 225, 395422.
Bagnold, R. A.1966 An approach to the sediment transport for general physics. Geological Survey Professional Papers 422-I.
Bettencourt, J. H. & Dias, F. 2018 Wall pressure and vorticity in the intermittently turbulent regime of the Stokes boundary layer. J. Fluid Mech. 851, 479506.
Blennerhassett, P. J. & Bassom, A. P. 2002 The linear stability of flat Stokes layers. J. Fluid Mech. 464, 393410.
Blondeaux, P. & Seminara, G. 1979 Transizione incipiente al fondo di unonda di gravitá. Acc. Naz. Lincei 67, 408411.
Blondeaux, P., Sleath, J. F. A. & Vittori, G. 1988 Experimental data on sand ripples in an oscillatory flow. Rep. 1, 88.
Blondeaux, P. & Vittori, G. 1991 A route to chaos in an oscillatory flow: Feigenbaum scenario. Phys. Fluids 3 (11), 24922495.
Blondeaux, P. & Vittori, G. 1994 Wall imperfections as a triggering mechanism for Stokes layer transition. J. Fluid Mech. 264, 107135.
Blondeaux, P., Vittori, G. & Mazzuoli, M. 2016 Pattern formation in a thin layer of sediment. Mar. Geol. 376, 3950.
Blondeaux, P., Vittori, G. & Porcile, G. 2018 Modeling the turbulent boundary layer at the bottom of sea wave. Coast. Engng 141, 1223.
Carstensen, S., Sumer, B. M. & Fredsøe, J. 2010 Coherent structures in wave boundary layers. Part 1. Oscillatory motion. J. Fluid Mech. 646, 169206.
Carstensen, S., Sumer, B. M. & Fredsøe, J. 2012 A note on turbulent spots over a rough bed in wave boundary layers. Phys. Fluids 24 (11), 115104.
Clark, A. H., Shattuck, M. D., Ouellette, N. T. & O’Hern, C. S. 2017 Role of grain dynamics in determining the onset of sediment transport. Phys. Rev. Fluids 2 (3), 034305.
Costamagna, P., Vittori, G. & Blondeaux, P. 2003 Coherent structures in oscillatory boundary layers. J. Fluid Mech. 474, 133.
Fredsøe, J. & Deigaard, R. 1992 Mechanics of Coastal Sediment Transport. World Scientific.
Ghodke, C. D. & Apte, S. V. 2016 Dns study of particle-bed–turbulence interactions in an oscillatory wall-bounded flow. J. Fluid Mech. 792, 232251.
Ghodke, C. D. & Apte, S. V. 2018 Roughness effects on the second-order turbulence statistics in oscillatory flows. Comput. Fluids 162, 160170.
Graf, W. H. 1984 Hydraulics of Sediment Transport. Water Resources Publications, LLC.
Gyr, A. & Hoyer, K. 2006 Sediment Transport. Springer.
Hino, M., Kashiwayanagi, M., Nakayama, A. & Hara, T. 1983 Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow. J. Fluid Mech. 131, 363400.
Hino, M., Sawamoto, M. & Takasu, S. 1976 Experiments on transition to turbulence in an oscillatory pipe flow. J. Fluid Mech. 75 (2), 193207.
Jensen, B. L., Sumer, B. M. & Fredsøe, J. 1989 Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 206, 265297.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Kajiura, K. 1968 A model of the bottom boundary layer in water waves. Bull. Earthq. Res. Inst. Univ. Tokyo 46, 75123.
Kidanemariam, A. G. & Uhlmann, M. 2014a Direct numerical simulation of pattern formation in subaqueous sediment. J. Fluid Mech. 750, R2.
Kidanemariam, A. G. & Uhlmann, M. 2014b Interface-resolved direct numerical simulation of the erosion of a sediment bed sheared by laminar channel flow. Intl J. Multiphase Flow 67, 174188.
Kidanemariam, A. G. & Uhlmann, M. 2017 Formation of sediment patterns in channel flow: minimal unstable systems and their temporal evolution. J. Fluid Mech. 818, 716743.
Lobkovsky, A. E., Orpe, A. V., Molloy, R., Kudrolli, A. & Rothman, D. H. 2008 Erosion of a granular bed driven by laminar fluid flow. J. Fluid Mech. 605, 4758.
Mazzuoli, M., Blondeaux, P., Simeonov, J. & Calantoni, J. 2018 Direct numerical simulation of oscillatory flow over a wavy, rough, and permeable bottom. J. Geophys. Res. Oceans 123 (3), 15951611.
Mazzuoli, M., Kidanemariam, A. G., Blondeaux, P., Vittori, G. & Uhlmann, M. 2016 On the formation of sediment chains in an oscillatory boundary layer. J. Fluid Mech. 789, 461480.
Mazzuoli, M., Kidanemariam, A. G. & Uhlmann, M. 2019 Direct numerical simulations of ripples in an oscillatory flow. J. Fluid Mech. 863, 572600.
Mazzuoli, M. & Vittori, G. 2016 Transition to turbulence in an oscillatory flow over a rough wall. J. Fluid Mech. 792, 6797.
Mazzuoli, M. & Vittori, G. 2019 Turbulent spots in an oscillatory flow over a rough wall. Eur. J. Mech. (B/Fluids) 78, 161168.
Mazzuoli, M., Vittori, G. & Blondeaux, P. 2011a Turbulent spots in a Stokes boundary layer. J. Phys.: Conf. Ser. 318, 032032.
Mazzuoli, M., Vittori, G. & Blondeaux, P. 2011b Turbulent spots in oscillatory boundary layers. J. Fluid Mech. 685, 365376.
Ozdemir, C. E., Hsu, T.-J. & Balachandar, S. 2014 Direct numerical simulations of transition and turbulence in smooth-walled Stokes boundary layer. Phys. Fluids 26 (4), 045108.
Scandura, P., Faraci, C. & Foti, E. 2016 A numerical investigation of acceleration-skewed oscillatory flows. J. Fluid Mech. 808, 576613.
Schlichting, H. 1936 Experimentelle untersuchungen zum rauhigkeitsproblem. Arch. Appl. Mech. 7 (1), 134.
Sleath, J. F. A. 1988 Transition in oscillatory flow over rough beds. J. Waterways Port Coast. Ocean Engng 114 (1), 1833.
Soulsby, R. 1997 Dynamics of Marine Sands. Thomas Telford.
Sumer, B. M. & Fredsøe, J. 2002 The Mechanics of Scour in the Marine Environment. World Scientific.
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.
Uhlmann, M. 2008 Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20 (5), 053305.
Verzicco, R. & Vittori, G. 1996 Direct simulation of transition in Stokes boundary layers. Phys. Fluids 8 (6), 13411343.
Vittori, G. 2003 Sediment suspension due to waves. J. Geophys. Res. 108 (C6), 31733189.
Vittori, G. & Verzicco, R. 1998 Direct simulation of transition in an oscillatory boundary layer. J. Fluid Mech. 371, 207232.
Wong, M. & Parker, G. 2006 Reanalysis and correction of bed-load relation of Meyer-Peter and Müller using their own database. ASCE J. Hydraul. Engng 132 (11), 11591168.
Wu, X. 1992 The nonlinear evolution of high-frequency resonant-triad waves in an oscillatory Stokes layer at high Reynolds number. J. Fluid Mech. 245, 553597.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Mazzuoli et al. supplementary movie 1
Streamwise velocity fluctuations at a plane above the mean bottom elevation. Run 2 (Rδ=750, d/δ=0.335).

 Video (11.4 MB)
11.4 MB
VIDEO
Movies

Mazzuoli et al. supplementary movie 2
Spanwise vorticity fluctuations at a plane above the mean bottom elevation. Run 2 (Rδ=750, d/δ=0.335).

 Video (12.8 MB)
12.8 MB
VIDEO
Movies

Mazzuoli et al. supplementary movie 3
Top view of the computational domain. Vortex structures are detected by isosurfaces of positive (green) and negative (yellow) spanwise vorticity fluctuations while particles are coloured according to their velocity (increasing blue to red). Grey particles are resting.

 Video (14.1 MB)
14.1 MB
PDF
Supplementary material

Mazzuoli et al. supplementary material
Supplementary figure

 PDF (55 KB)
55 KB

Interface-resolved direct numerical simulations of sediment transport in a turbulent oscillatory boundary layer

  • Marco Mazzuoli (a1), Paolo Blondeaux (a1), Giovanna Vittori (a1), Markus Uhlmann (a2), Julian Simeonov (a3) and Joseph Calantoni (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed