Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-20T04:59:24.588Z Has data issue: false hasContentIssue false

Internal wave attractors: different scenarios of instability

Published online by Cambridge University Press:  13 December 2016

C. Brouzet
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
E. Ermanyuk
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France Lavrentyev Institute of Hydrodynamics, av. Lavrentyev 15, Novosibirsk 630090, Russia
S. Joubaud
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
G. Pillet
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
T. Dauxois*
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
*
Email address for correspondence: Thierry.dauxois@ens-lyon.fr

Abstract

This paper presents an experimental study of different instability scenarios in a parallelogram-shaped internal wave attractor in a trapezoidal domain filled with a uniformly stratified fluid. Energy is injected into the system via the oscillatory motion of a vertical wall of the trapezoidal domain. Whole-field velocity measurements are performed with the conventional particle image velocimetry technique. In the linear regime, the total kinetic energy of the fluid system is used to quantify the strength of attractors as a function of coordinates in the parameter space defining their zone of existence, the so-called Arnold tongue. In the nonlinear regime, the choice of the operational point in the Arnold tongue is shown to have a significant impact on the scenario of the onset of triadic instability, most notably in terms of the influence of confinement on secondary waves. The onset of triadic resonance instability may occur as a spatially localized event similar to Scolan et al. (Phys. Rev. Lett., vol. 110, 2013, 234501) in the case of strong focusing or in form of growing normal modes as in McEwan (J. Fluid Mech., vol. 50, 1971, pp. 431–448) for the limiting case of rectangular domain. In the present paper, we describe also a new intermediate scenario for the case of weak focusing. We explore the long-term behaviour of cascades of triadic instabilities in wave attractors and show a persistent trend toward formation of standing-wave patterns corresponding to some discrete peaks of the frequency spectrum. At sufficiently high level of energy injection the system exhibits a ‘mixing box’ regime which has certain qualitatively universal properties regardless to the choice of the operating point in the Arnold tongue. In particular, for this regime, we observe a statistics of events with high horizontal vorticity, which serve as kinematic indicators of mixing.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beardsley, R. C. 1970 An experimental study of inertial waves in a closed cone. Stud. Appl. Maths 49, 187196.CrossRefGoogle Scholar
Benielli, D. & Sommeria, J. 1998 Excitation and breaking of internal gravity waves by parametric instability. J. Fluid Mech. 374, 117144.Google Scholar
Bourget, B., Dauxois, T., Joubaud, S. & Odier, P. 2013 Experimental study of parametric subharmonic instability for internal plane waves. J. Fluid Mech. 723, 120.Google Scholar
Bourget, B., Scolan, H., Dauxois, T., Le Bars, M., Odier, P. & Joubaud, S. 2014 Finite-size effects in parametric subharmonic instability. J. Fluid Mech. 759, 739750.CrossRefGoogle Scholar
Brouzet, C., Ermanyuk, E. V., Joubaud, S., Sibgatullin, I. N. & Dauxois, T. 2016a Energy cascade in internal wave attractors. Europhys. Lett. 113, 44001.Google Scholar
Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E. V. & Dauxois, T. 2016b Internal wave attractors examined using laboratory experiments and 3D numerical simulations. J. Fluid Mech. 793, 109131.Google Scholar
Dauxois, T. & Young, W. R. 1999 Near-critical refection of internal waves. J. Fluid Mech. 390, 271295.Google Scholar
Dossmann, Y., Bourget, B., Brouzet, C., Dauxois, T., Joubaud, S. & Odier, P. 2016 Mixing by internal waves quantified using combined PIV/PLIF technique. Exp. Fluids 57, 132.Google Scholar
Drijfhout, S. & Maas, L. R. M. 2007 Impact of channel geometry and rotation on the trapping of internal tides. J. Phys. Oceanogr. 37, 27402763.CrossRefGoogle Scholar
Duguet, Y., Scott, J. F. & Le Penven, L. 2006 Oscillatory jets and instabilities in a rotating cylinder. Phys. Fluids 18, 104104.Google Scholar
Echeverri, P., Yokossi, T., Balmforth, N. J. & Peacock, T. 2011 Tidally generated internal-wave attractors between double ridges. J. Fluid Mech. 669, 354374.Google Scholar
Favier, B., Barker, A. J., Baruteau, C. & Ogilvie, G. I. 2014 Non-linear evolution of tidally forced inertial waves in rotating fluid bodies. Mon. Not. R. Astron. Soc. 439 (1), 845860.Google Scholar
Favier, B., Grannan, A. M., Le Bars, M. & Aurnou, J. M. 2015 Generation and maintenence of bulk turbulence by libration-driven elliptical instability. Phys. Fluids 27, 066601.Google Scholar
Flandrin, P. 1999 Time-Frequency/Time-Scale Analysis, Time-Frequency Toolbox for Matlab. Academic.Google Scholar
Garrett, C. & Kunze, E. 2007 Internal tide generation in deep ocean. Annu. Rev. Fluid Mech. 39, 5787.CrossRefGoogle Scholar
Gerkema, T. & van Haren, H. 2012 Absence of internal tidal beams due to non-uniform stratification. J. Sea Res. 74, 27.Google Scholar
Gostiaux, L., Didelle, H., Mercier, S. & Dauxois, T. 2007 A novel internal waves generator. Exp. Fluids 42, 123130.Google Scholar
Grisouard, N., Staquet, C. & Pairaud, I. 2008 Numerical simulation of a two-dimensional internal wave attractor. J. Fluid Mech. 614, 114.Google Scholar
Guo, Y. & Holmes-Cerfon, M. 2016 Internal wave attractors over random, small-amplitude topography. J. Fluid Mech. 787, 148174.Google Scholar
Hazewinkel, J., van Breevoort, P., Dalziel, S. & Maas, L. R. M. 2008 Observations on the wavenumber spectrum and evolution of an internal wave attractor. J. Fluid Mech. 598, 373382.Google Scholar
Hazewinkel, J., Tsimitri, C., Maas, L. R. M. & Dalziel, S. 2010 Observations on the robustness of internal wave attractor to perturbations. Phys. Fluids 22, 107102.Google Scholar
Hutter, K., Wang, Y. & Chubarenko, I. P. 2011 Physics of Lakes, vol. 2: Lakes as Oscillators. Springer.Google Scholar
Joubaud, S., Munroe, J., Odier, P. & Dauxois, T. 2012 Experimental parametric subharmonic instability in stratifed fuids. Phys. Fluids 24 (4), 041703.Google Scholar
Jouve, L. & Ogilvie, G. I. 2014 Direct numerical simulations of an inertial wave attractor in linear and nonlinear regimes. J. Fluid Mech. 745, 223250.CrossRefGoogle Scholar
Karimi, H. H. & Akylas, T. R. 2014 Parametric subharmonic instability of internal waves: locally confined beams versus monochromatic wave trains. J. Fluid Mech. 757, 381402.Google Scholar
Koudella, C. R. & Staquet, C. 2006 Instability mechanisms of a two-dimensional progressive internal gravity wave. J. Fluid Mech. 548, 165196.Google Scholar
Maas, L. R. M. 2005 Wave attractors: linear yet nonlinear. Intl J. Bifurcation Chaos. 15 (9), 27572782.Google Scholar
Maas, L. R. M., Benielli, D., Sommeria, J. & Lam, F. P. A. 1997 Observations of an internal wave attractor in a confined stably stratified fluid. Nature 388, 557561.Google Scholar
Maas, L. R. M. & Lam, F. P. A. 1995 Geometric focusing of internal waves. J. Fluid Mech. 300, 141.Google Scholar
Manders, A. M. M. & Maas, L. R. M. 2003 Observations of inertial waves in a rectangular basin with one sloping boundary. J. Fluid Mech. 493, 5988.Google Scholar
Manders, A. M. M. & Maas, L. R. M. 2004 On the three-dimensional structure of the inertial wave field in a rectangular basin with one sloping boundary. Fluid Dyn. Res. 35, 121.Google Scholar
McEwan, A. D. 1971 Degeneration of resonantly excited standing internal gravity waves. J. Fluid Mech. 50, 431448.Google Scholar
McEwan, A. D. 1983 Internal mixing in stratified fluids. J. Fluid Mech. 128, 5980.Google Scholar
Mercier, M. J., Garnier, N. B. & Dauxois, T. 2008 Refection and diffraction of internal waves analysed with the Hilbert transform. Phys. Fluids 20 (8), 086601.Google Scholar
Mercier, M. J., Martinand, D., Mathur, M., Gostiaux, L., Peacock, T. & Dauxois, T. 2010 New wave generation. J. Fluid Mech. 657, 308334.Google Scholar
Mowbray, D. E. & Rarity, B. S. H. 1967 A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density-stratified fluid. J. Fluid Mech. 28, 116.CrossRefGoogle Scholar
Nazarenko, S. V. 2011 Wave Turbulence, Lecture Notes in Physics. Springer.CrossRefGoogle Scholar
Ogilvie, G. I. 2005 Wave attractors and the asymptotic dissipation rate of tidal disturbances. J. Fluid Mech. 543, 1944.Google Scholar
Phillips, O. M. 1966 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Rieutord, M., Georgeot, B. & Valdettaro, L 2001 Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. J. Fluid Mech. 435, 103144.Google Scholar
Scolan, H., Ermanyuk, E. & Dauxois, T. 2013 Nonlinear fate of internal waves attractors. Phys. Rev. Lett. 110, 234501.Google Scholar
Thompson, R. 1970 Diurnal tides and shear instabilities in a rotating cylinder. J. Fluid Mech. 40, 737751.Google Scholar
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.Google Scholar
Wang, G., Zheng, Q., Lin, M., Dai, D. & Qiao, F. 2015 Three dimensional simulation of internal wave attractors in the Luzon strait. Acta. Oceanol. Sin. 34 (11), 1421.Google Scholar