Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-16T17:18:34.104Z Has data issue: false hasContentIssue false

Internal wave attractors examined using laboratory experiments and 3D numerical simulations

Published online by Cambridge University Press:  14 March 2016

C. Brouzet
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
I. N. Sibgatullin
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France Institute of Mechanics and Department of Mechanics and Mathematics, Moscow State University, Moscow 119192, Russia Institute for System Programming, Russian Academy of Sciences, Moscow 109004, Russia
H. Scolan
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Parks Rd, Oxford OX1 3PU, UK
E. V. Ermanyuk
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France Lavrentyev Institute of Hydrodynamics, Siberian Division of the Russian Academy of Sciences, Novosibirsk 630090, Russia
T. Dauxois*
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
*
Email address for correspondence: Thierry.dauxois@ens-lyon.fr

Abstract

In the present paper, we combine numerical and experimental approaches to study the dynamics of stable and unstable internal wave attractors. The problem is considered in a classic trapezoidal set-up filled with a uniformly stratified fluid. Energy is injected into the system at global scale by the small-amplitude motion of a vertical wall. Wave motion in the test tank is measured with the help of conventional synthetic schlieren and particle image velocimetry techniques. The numerical set-up closely reproduces the experimental one in terms of geometry and the operational range of the Reynolds and Schmidt numbers. The spectral element method is used as a numerical tool to simulate the nonlinear dynamics of a viscous salt-stratified fluid. We show that the results of 3D calculations are in excellent qualitative and quantitative agreement with the experimental data, including the spatial and temporal parameters of the secondary waves produced by triadic resonance instability. Further, we explore experimentally and numerically the effect of lateral walls on secondary currents and spanwise distribution of velocity amplitudes in the wave beams. Finally, we test the assumption of a bidimensional flow and estimate the error made in synthetic schlieren measurements due to this assumption.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, M. H. 2008 Observations of parametric subharmonic instability of the diurnal internal tide in the South China Sea. Geophys. Res. Lett. 35, L15602.CrossRefGoogle Scholar
Alford, M. H., MacKinnon, J. A., Zhao, Z., Pinkel, R., Klymak, J. & Peacock, T. 2007 Internal waves across the Pacific. Geophys. Res. Lett. 34, GL031566.CrossRefGoogle Scholar
Batchelor, G. K. 1959 Small-scale variation of convected quantities like temperature in turbulent fluids. J. Fluid Mech. 5, 113133.CrossRefGoogle Scholar
Benielli, D. & Sommeria, J. 1998 Excitation and breaking of internal gravity waves by parametric instability. J. Fluid Mech. 374, 117144.CrossRefGoogle Scholar
Bonometti, T., Balachandar, S. & Magnaudet, J. 2008 Wall effects in non-Boussinesq density currents. J. Fluid Mech. 616, 445475.CrossRefGoogle Scholar
Bourget, B., Dauxois, T., Joubaud, S. & Odier, P. 2013 Experimental study of parametric subharmonic instability for internal plane waves. J. Fluid Mech. 723, 120.CrossRefGoogle Scholar
Bourget, B., Scolan, H., Dauxois, T., Le Bars, M., Odier, P. & Joubaud, S. 2014 Finite-size effects in parametric subharmonic instability. J. Fluid Mech. 759, 739750.CrossRefGoogle Scholar
Buch, K. A. Jr. & Dahm, W. J. A. 1996 Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 1. $Sc>1$ . J. Fluid Mech. 317, 2171.CrossRefGoogle Scholar
Chang, Y. S., Xu, X., Ozgokmen, T. M., Chassignet, E. P., Peters, H. & Fischer, P. F. 2005 Comparison of gravity current mixing parametrizations and calibration using a high-resolution 3D nonhydrostatic spectral element model. Ocean Model. 10 (3), 342368.CrossRefGoogle Scholar
Dalziel, S. B., Hughes, G. O. & Sutherland, B. R. 2000 Whole field density measurements by ‘synthetic’ schlieren. Exp. Fluids 28, 322335.CrossRefGoogle Scholar
Dauxois, T. & Young, W. R. 1999 Near-critical refection of internal waves. J. Fluid Mech. 390, 271295.CrossRefGoogle Scholar
Dintrans, B., Rieutord, M. & Valdettaro, L. 1999 Gravito-inertial waves in a rotating stratified sphere or spherical shell. J. Fluid Mech. 398, 271297.CrossRefGoogle Scholar
Drijfhout, S. & Maas, L. R. M. 2007 Impact of channel geometry and rotation on the trapping of internal tides. J. Phys. Oceanogr. 37, 27402763.CrossRefGoogle Scholar
Echeverri, P., Yokossi, T., Balmforth, N. J. & Peacock, T. 2011 Tidally generated internal-wave attractors between double ridges. J. Fluid Mech. 669, 354374.CrossRefGoogle Scholar
Favier, B., Grannan, A. M., Le Bars, M. & Aurnou, J. M. 2015 Generation and maintenence of bulk turbulence by libration-driven elliptical instability. Phys. Fluids 27, 066601.CrossRefGoogle Scholar
Fincham, A. & Delerce, G. 2000 Advanced optimization of correlation imaging velocimetry algorithms. Exp. Fluids 29 (S), S13S22.CrossRefGoogle Scholar
Fischer, P. F. 1997 An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133, 84101.CrossRefGoogle Scholar
Fischer, P. & Ronquist, E. 1994 Spectral element methods for large scale parallel Navier–Stokes calculations. Comput. Meth. Appl. Mech. Engng 116 (1–4), 6976.CrossRefGoogle Scholar
Fischer, P. F. & Mullen, J. S. 2001 Filter-based stabilization of spectral element methods. C. R. Acad. Sci. Paris I 332, 265270.CrossRefGoogle Scholar
Flandrin, P. 1999 Time–Frequency/Time-Scale Analysis, Time–Frequency Toolbox for Mathlab©. Academic.Google Scholar
Gostiaux, L., Didelle, H., Mercier, S. & Dauxois, T. 2007 A novel internal waves generator. Exp. Fluids 42, 123130.CrossRefGoogle Scholar
Grisouard, N., Staquet, C. & Pairaud, I. 2008 Numerical simulation of a two-dimensional internal wave attractor. J. Fluid Mech. 614, 114.CrossRefGoogle Scholar
Hazewinkel, J., Grisouard, N. & Dalziel, S. B. 2011 Comparison of laboratory and numerically observed scalar fields of an internal wave attractor. Eur. J. Mech. (B/Fluids) 30, 5156.CrossRefGoogle Scholar
Hazewinkel, J., Maas, L. R. M. & Dalziel, S. 2011 Tomographic reconstruction of internal wave patterns in a paraboloid. Exp. Fluids 50, 247258.CrossRefGoogle Scholar
Hazewinkel, J., Tsimitri, C., Maas, L. R. M. & Dalziel, S. 2010 Observations on the robustness of internal wave attractor to perturbations. Phys. Fluids 22, 107102.CrossRefGoogle Scholar
Hazewinkel, J., van Breevoort, P., Dalziel, S. & Maas, L. R. M. 2008 Observations on the wavenumber spectrum and evolution of an internal wave attractor. J. Fluid Mech. 598, 373382.CrossRefGoogle Scholar
Joubaud, S., Munroe, J., Odier, P. & Dauxois, T. 2012 Experimental parametric subharmonic instability in stratifed fluids. Phys. Fluids 24 (4), 041703.CrossRefGoogle Scholar
Jouve, L. & Ogilvie, G. I. 2014 Direct numerical simulations of an inertial wave attractor in linear and nonlinear regimes. J. Fluid Mech. 745, 223250.CrossRefGoogle Scholar
Karimi, H. H. & Akylas, T. R. 2014 Parametric subharmonic instability of internal waves: locally confined beams versus monochromatic wave trains. J. Fluid Mech. 757, 381402.CrossRefGoogle Scholar
Koudella, C. R. & Staquet, C. 2006 Instability mechanisms of a two-dimensional progressive internal gravity wave. J. Fluid Mech. 548, 165196.CrossRefGoogle Scholar
Lam, F. P. A. & Maas, L. R. M. 2008 Internal wave focusing revisited; a reanalysis and new theoretical links. Fluid Dyn. Res. 40, 95122.CrossRefGoogle Scholar
Lesur, G. & Longaretti, P.-Y. 2005 On the relevance of subcritical hydrodynamic turbulence to accretion disk transport. Astron. Astrophys. 444, 2544.CrossRefGoogle Scholar
Lesur, G. & Longaretti, P.-Y. 2007 Impact of dimensioless numbers on the efficiency of magnetorotational instability induced turbulent transport. Mon. Not. R. Astron. Soc. 378, 14711480.CrossRefGoogle Scholar
Lesur, G. & Ogilvie, G. 2010 On the angular momentum transport due to vertical convection in accretion disks. Mon. Not. R. Astron. Soc. 404, 6468.CrossRefGoogle Scholar
Maas, L. R. M. 2005 Wave attractors: linear yet nonlinear. Intl J. Bifurcation Chaos 15 (9), 27572782.CrossRefGoogle Scholar
Maas, L. R. M., Benielli, D., Sommeria, J. & Lam, F. P. A. 1997 Observations of an internal wave attractor in a confined stably stratified fluid. Nature 388, 557561.CrossRefGoogle Scholar
Maas, L. R. M. & Harlander, U. 2007 Equatorial wave attractors and inertial oscillations. J. Fluid Mech. 570, 4767.CrossRefGoogle Scholar
Maas, L. R. M. & Lam, F. P. A. 1995 Geometric focusing of internal waves. J. Fluid Mech. 300, 141.CrossRefGoogle Scholar
MacKinnon, J. A. & Winters, K. B. 2005 Subtropical catastrophe: significant loss of low-mode tidal energy at $28.9^{\circ }$ . Geophys. Res. Lett. 32, GL023376.CrossRefGoogle Scholar
Manders, A. M. M. & Maas, L. R. M. 2003 Observations of inertial waves in a rectangular basin with one sloping boundary. J. Fluid Mech. 493, 5988.CrossRefGoogle Scholar
Manders, A. M. M. & Maas, L. R. M. 2004 On the three-dimensional structure of the inertial wave field in a rectangular basin with one sloping boundary. Fluid Dyn. Res. 35 (1), 121.CrossRefGoogle Scholar
Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. 1997 A finite volume incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 102, 57535766.CrossRefGoogle Scholar
McEwan, A. D. 1971 Degeneration of resonantly excited standing internal gravity waves. J. Fluid Mech. 50, 431448.CrossRefGoogle Scholar
Mercier, J. M., Martinand, D., Mathur, M., Gostiaux, L., Peacock, T. & Dauxois, T. 2010 New wave generation. J. Fluid Mech. 657, 308334.CrossRefGoogle Scholar
Mercier, M. J., Garnier, N. B. & Dauxois, T. 2008 Reflection and diffraction of internal waves analysed with the Hilbert transform. Phys. Fluids 20 (8), 086601.CrossRefGoogle Scholar
Ogilvie, G. I. 2005 Wave attractors and the asymptotic dissipation rate of tidal disturbances. J. Fluid Mech. 543, 1944.CrossRefGoogle Scholar
Rabiti, A. & Maas, L. R. M. 2013 Meridional trapping and zonal propagation of inertial waves in a rotating fluid shell. J. Fluid Mech. 729, 445470.CrossRefGoogle Scholar
Rahmani, M., Seymour, B. & Lawrence, G. 2014 The evolution of large and small-scale structures in Kelvin–Helmholtz instabilities. Environ. Fluid Mech. 14, 12751301.CrossRefGoogle Scholar
Rieutord, M., Georgeot, B. & Valdettaro, L. 2000 Wave attractors in rotating fluids: a paradigm for ill-posed Cauchy problems. Phys. Rev. Lett. 85, 42774280.CrossRefGoogle ScholarPubMed
Rieutord, M., Georgeot, B. & Valdettaro, L. 2001 Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. J. Fluid Mech. 435, 103144.CrossRefGoogle Scholar
Rieutord, M. & Valdettaro, L. 1997 Inertial waves in a rotating spherical shell. J. Fluid Mech. 341, 7799.CrossRefGoogle Scholar
Rieutord, M. & Valdettaro, L. 2010 Viscous dissipation by tidally forced inertial modes in a rotating spherical shell. J. Fluid Mech. 643, 363394.CrossRefGoogle Scholar
Rieutord, M., Valdettaro, L. & Georgeot, B. 2002 Analysis of singular inertial modes in a spherical shell: the slender toroidal shell model. J. Fluid Mech. 463, 345360.CrossRefGoogle Scholar
Scolan, H., Ermanyuk, E. & Dauxois, T. 2013 Nonlinear fate of internal waves attractors. Phys. Rev. Lett. 110, 234501.CrossRefGoogle Scholar
Stewartson, K. 1971 On trapped oscillations of a rotating fluid in a thin spherical shell. Tellus 23, 506510.CrossRefGoogle Scholar
Stewartson, K. 1972 On trapped oscillations of a rotating fluid in a thin spherical shell II. Tellus 24, 283287.CrossRefGoogle Scholar
Sutherland, B. R., Dalziel, S. B., Hughes, G. O. & Linden, P. F. 1999 Visualization and measurement of internal waves by ‘synthetic’ schlieren. Part 1. Vertically oscillating cylinder. J. Fluid Mech. 390, 93126.CrossRefGoogle Scholar