Skip to main content Accessibility help

Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow

  • Gary J. Chandler (a1) and Rich R. Kerswell (a1)


We consider long-time simulations of two-dimensional turbulence body forced by $\sin 4y\hat {\boldsymbol{x}} $ on the torus $(x, y)\in \mathop{[0, 2\mathrm{\pi} ] }\nolimits ^{2} $ with the purpose of extracting simple invariant sets or ‘exact recurrent flows’ embedded in this turbulence. Each recurrent flow represents a sustained closed cycle of dynamical processes which underpins the turbulence. These are used to reconstruct the turbulence statistics using periodic orbit theory. The approach is found to be reasonably successful at a low value of the forcing where the flow is close to but not fully in its asymptotic (strongly) turbulent regime. Here, a total of 50 recurrent flows are found with the majority buried in the part of phase space most populated by the turbulence giving rise to a good reproduction of the energy and dissipation p.d.f. However, at higher forcing amplitudes now in the asymptotic turbulent regime, the generated turbulence data set proves insufficiently long to yield enough recurrent flows to make viable predictions. Despite this, the general approach seems promising providing enough simulation data is available since it is open to extensive automation and naturally generates dynamically important exact solutions for the flow.


Corresponding author

Email address for correspondence:


Hide All
Armbruster, D., Nicolaenko, B., Smaoui, N. & Chossat, P. 1996 Symmetries and dynamics of 2-D Navier–Stokes flow. Physica D 95, 8193.
Arnol’d, V. I. & Meshalkin, L. D. 1960 The seminar of A.N. Kolmogorov on selected topics in analysis (1958–1959). Usp. Mat. Nauk 15, 247250.
Artuso, R., Aurell, E. & Cvitanović, P. 1990a Recycling of strange sets: I cycle expansions. Nonlinearity 3, 325359.
Artuso, R., Aurell, E. & Cvitanović, P. 1990b Recycling of strange sets: II applications. Nonlinearity 3, 361386.
Auerbach, D., Cvitanović, P., Eckmann, J.-P., Gunaratne, G. & Procaccia, I. 1987 Exploring chaotic motion through periodic orbits. Phys. Rev. Lett. 58, 23872389.
Bartello, P. & Warn, T. 1996 Self-similarity of decaying two-dimensional turbulence. J. Fluid Mech. 326, 357372.
Boffetta, G. & Musacchio, S. 2010 Evidence for a double cascade scenario in two-dimensional turbulence. Phys. Rev. E 82, 016307.
Boghosian, B. M., Fazendeiro, L. M., Lätt, J., Tang, H. & Coveney, P. V. 2011 New variational principles for locating periodic orbits of differential equations. Phil. Trans. R. Soc. A 369, 22112218.
Bondarenko, N. F., Gak, M. Z. & Dolzhanskii, F. V. 1979 Laboratory and theoretical models of plane periodic flow. Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 15, 711716.
Borue, V. & Orszag, S. A. 1996 Numerical study of three-dimensional Kolmogorov flow at high Reynolds numbers. J. Fluid Mech. 306, 293323.
Burgess, J. M., Bizon, C., McCormick, W. D., Swift, J. B. & Swinney, H. L. 1999 Instability of the Kolmogorov flow in a soap film. Phys. Rev. E 60, 715721.
Christiansen, F., Cvitanović, P. & Putkaradze, V. 1997 Spatiotemporal chaos in terms of unstable recurrent patterns. Nonlinearity 10, 5570.
Cvitanović, P. 1988 Invariant measurement of strange sets in terms of cycles. Phys. Rev. Lett. 61, 27292732.
Cvitanović, P. 1992 Periodic orbit theory in classical and quantum mechanics. Chaos 2, 1.
Cvitanović, P. 1995 Dynamical averaging in terms of periodic orbits. Physica D 83, 109123.
Cvitanović, P. 2007 Continuous symmetry reduced trace formulas
Cvitanović, P. 2012 Continuous symmetry reduced trace formulas. Preprint.
Cvitanović, P., Artuso, R., Dahlqvist, P., Mainieri, R., Tanner, G., Vattay, G., Whelan, N. & Wirzba, A. 2013 Classical and Quantum Chaos webbook available at
Cvitanović, P., Davidchack, R. & Siminos, E. 2010 On the state space geometry of the Kuramoto-Sivashinsky flow in a periodic domain. SIAM J. Appl. Dyn. Sys. 9, 133.
Cvitanović, P. & Gibson, J. F. 2010 Geometry of turbulence in wall-bounded shear flows: periodic orbits. Phys. Scr. 142, 014007.
Dahlqvist, P. 1994 Determination of resonance spectra for bound cahotic systems. J. Phys. A: Math. Gen. 27, 763785.
Dahlqvist, P. & Russberg, G. 1991 Periodic orbit quantization of bound chaotic systems. J. Phys. A 24, 47634778.
Dennis, J. E. & Schnabel, R. B. 1996 Numerical Methods for Unconstrained Optimisation and Nonlinear equations. In SIAM Classics. SIAM.
Dettmann, C. P. & Morriss, G. P. 1997 Stability ordering of cycle expansions. Phys. Rev. Lett. 78, 42014204.
Duguet, Y., Pringle, C. C. T. & Kerswell, R. R. 2008 Relative periodic orbits in transitional pipe flow. Phys. Fluids 20, 114102.
Eckhardt, B., Faisst, H., Schmiegel, A. & Schumacher, J. 2002 Turbulence transition in shear flows. In Advances in Turbulence IX: Proceedings 9th European Turbulence Conference (Southampton) (ed. I. P. Castro et al.), p. 701, CISME.
Eckhardt, B., Schneider, T. M., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447468.
Eckmann, P. & Ruelle, D. 1985 Ergodic theory of chaotic systems. Rev. Mod. Phys. 57, 617656.
Fazendeiro, L., Boghosian, B. M., Coveney, P. V. & Lätt, J. 2010 Unstable periodic orbits in weak turbulence. J. Comput. Sci. 1, 1323.
Gaspard, P. 1997 Chaos Scattering and Statistical Mechanics. CUP.
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2008 Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech. 611, 107130.
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 243266.
Gotoh, K. & Yamada, M. 1986 The instability of rhombic cell flows. Fluid Dyn. Res. 1, 165176.
Gutzwiller, 1990 Chaos in Classical and Quantum Mechanics. Springer.
Halcrow, J., Gibson, J. F., Cvitanović, P. & Viswanath, D. 2009 Heteroclinic connections in plane Couette flow. J. Fluid Mech. 621, 365376.
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanism of near-wall turbulence structures. J. Fluid Mech. 287, 317348.
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear travelling waves in turbulent pipe flow. Science 305, 15941598.
Holmes, P., Lumley, J. L. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press.
Hopf, E. 1948 A mathematical example displaying features of turbulence. Commun. Appl. Maths 1, 303322.
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regenerative cycle and burst. J. Fluid Mech. 449, 291300.
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203225.
Kazantsev, E. 1998 Unstable periodic orbits and attractor of the barotropic ocean model. Nonlinear Process. Geophys. 5, 193208.
Kazantsev, E. 2001 Sensitivity of the attractor of the barotropic ocean model to external influences: approach by unstable periodic orbits. Nonlinear Process. Geophys. 8, 281300.
Kerswell, R. R. 2005 Recent Progress in understanding the transition to turbulence in a pipe. Nonlinearity 18, R17R44.
Kim, S.-C. & Okamoto, H. 2003 Bifurcations and inviscid limit of rhombic Navier–Stokes flows in tori. IMA J. Appl. Maths 68, 119134.
Kreilos, T. & Eckhardt, B. 2012 Periodic orbits near onset of chaos in plane Couette flow. Chaos 22, 047505.
Lan, Y. 2010 Cycle expansions: from maps to turbulence. Commun. Nonlinear Sci. Numer. Simul. 15, 502526.
Lan, Y. & Cvitanović, P. 2004 Variational method for finding periodic orbits in a general flow. Phys. Rev. E 69, 016217.
Lan, Y. & Cvitanović, P. 2008 Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics. Phys. Rev. E 78, 026208.
Lopez, V., Boyland, P., Heath, M. T. & Moser, R. D. 2005 Relative periodic solutions of the complex Ginzburg–Landau equation. SIAM J. Appl. Dyn. Syst. 4, 10421075.
MacKay, R. S. & Miess, J. D. 1987 Hamiltonian Dynamical Systems. Adam Hilger.
Marchioro, C. 1986 An example of absence of turbulence for any Reynolds number. Commun. Math. Phys. 105, 99106.
Meshalkin, L. D. & Sinai, Ya. G. 1961 Investigation of stability of a steady-state solution of a system of equations for the plane motion of an incompressible viscous liquid. Prikl. Mat. Mekh. 25, 11401143.
Obukhov, A. M. 1983 Kolmogorov flow and laboratoty simulation of it. Usp. Mat. Nauk 38, 101111.
Okamoto, H. & Shoji, M. 1993 Bifurcation diagrams in Kolmogorov’s problem of viscous incompressible fluid on 2-D flat tori. Japan. J. Indust. Appl. Math. 10, 191218.
Panton, R.L. (Ed.) 1997 Self-Sustaining Mechanisms of Wall Turbulence. Computational Mechanics.
Platt, N., Sirovich, L. & Fitzmaurice, N. 1991 An investigation of chaotic Kolmogorov flows. Phys. Fluids 3, 681696.
Poincaré, H. 1892 Les méthodes nouvelles de la méchanique céleste. Guthier-Villars.
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.
Ruelle, D. 1978 Statistical Mechanics, Thermodynamic Formalism. Addison-Wesley.
Saad, Y. & Schultz, M. H. 1986 GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856869.
Sarris, I. E., Jeanmart, H., Carati, D. & Winckelmans, G. 2007 Box-size dependence and breaking of translational invariance in the velocity statistics computed from three-dimensional turbulent Kolmogorov flows. Phys. Fluids 19, 095101.
She, Z. S. 1988 Large-scale dynamics and transition to turbulence in the two-dimensional Kolmogorov flow. In Proceedings on Current Trends in Turbulence Research (ed. Branover, H., Mond, M. & Unger, Y.), vol. 117, pp. 374396. American Institute of Aeronautics and Astronautics.
Shebalin, J. V. & Woodruff, S. L. 1997 Kolmogorov flow in three dimensions. Phys. Fluids 9, 164170.
Sommeria, J. 1986 Experimental study of the two-dimensional inverse energy cascade in a square box. J. Fluid Mech. 170, 139168.
Trefethen, L. N. & Bau, D. 1997 Numerical Linear Algebra. SIAM.
Tsang, Y.-K. & Young, W. R. 2008 Energy-enstrophy stability of beta-plane Kolmogorov flow with drag. Phys. Fluids 20, 084102.
van Veen, L., Kawahara, G. & Kida, S. 2006 Periodic motion representing isotropic turbulence. Fluid Dyn. Res. 38, 1946.
Viswanath, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339358.
Viswanath, D. 2009 The critical layer in pipe flow at high Reynolds number. Phil. Trans R. Soc. A 367, 561576.
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 884900.
Waleffe, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81, 41404143.
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93102.
Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 15171534.
Willis, A. P., Cvitanović, P. & Avila, M. 2013 Revealing the state space of turbulent pipe flow by symmetry reduction. Preprint, arXiv: 1203.3701.
Zoldi, S. & Greenside, H. S. 1998 Spatially localised unstable periodic orbits of a high-dimensional chaotic system. Phys. Rev. E 57, R2511.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title

Chandler and Kerswell supplementary movie
This is a video of the unstable periodic orbit P4 (as listed in Table 3 of Chandler & Kerswell, 2013) found from DNS carried out at Re=100.

 Unknown (176 KB)
176 KB

Chandler and Kerswell supplementary movie
This is a video of the DNS segment at Re=100 which suggested the presence of the periodic orbit P4 and from which the initial velocity field guess was taken to  converge P4 as an exact recurrent flow

 Unknown (2.7 MB)
2.7 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed