Skip to main content Accessibility help

Invariants of the reduced velocity gradient tensor in turbulent flows

  • J. I. Cardesa (a1), D. Mistry (a2), L. Gan (a2) and J. R. Dawson (a2)

In this paper we examine the invariants $p$ and $q$ of the reduced $2\times 2$ velocity gradient tensor (VGT) formed from a two-dimensional (2D) slice of an incompressible three-dimensional (3D) flow. Using data from both 2D particle image velocimetry (PIV) measurements and 3D direct numerical simulations of various turbulent flows, we show that the joint probability density functions (p.d.f.s) of $p$ and $q$ exhibit a common characteristic asymmetric shape consistent with $\langle pq\rangle \lt 0$ . An explanation for this inequality is proposed. Assuming local homogeneity we derive $\langle p\rangle = 0$ and $\langle q\rangle = 0$ . With the addition of local isotropy the sign of $\langle pq\rangle $ is proved to be the same as that of the skewness of $\partial {u}_{1} / \partial {x}_{1} $ , hence negative. This suggests that the observed asymmetry in the joint p.d.f.s of $p{{\ndash}}q$ stems from the universal predominance of vortex stretching at the smallest scales. Some advantages of this joint p.d.f. compared with that of $Q{{\ndash}}R$ obtained from the full $3\times 3$ VGT are discussed. Analysing the eigenvalues of the reduced strain-rate matrix associated with the reduced VGT, we prove that in some cases the 2D data can unambiguously discriminate between the bi-axial (sheet-forming) and axial (tube-forming) strain-rate configurations of the full $3\times 3$ strain-rate tensor.

Corresponding author
Email address for correspondence:
Hide All
del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.
Almalkie, S. & de Bruyn Kops, S. M. 2012 Energy dissipation rate surrogates in incompressible Navier–Stokes turbulence. J. Fluid Mech. 697, 204236.
Atkinson, C., Coudert, S., Foucaut, J.-M., Stanislas, M. & Soria, J. 2011 The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer. Exp. Fluids 50, 10311056.
Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1 (5), 497504.
Buxton, O. R. H. & Ganapathisubramani, B. 2010 Amplification of enstrophy in the far field of an axisymmetric turbulent jet. J. Fluid Mech. 651, 483502.
Buxton, O., Laizet, S. & Ganapathisubramani, B. 2011 The effects of resolution and noise on kinematic features of fine-scale turbulence. Exp. Fluids 51, 14171437.
Champagne, F. H. 1978 The fine-scale structure of the turbulent velocity field. J. Fluid Mech. 86, 67108.
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2 (5), 765777.
Chong, M. S., Soria, J., Perry, A. E., Chacin, J., Cantwell, B. J. & Na, Y. 1998 Turbulence structures of wall-bounded shear flows found using DNS data. J. Fluid Mech. 357, 225247.
Elsinga, G. E. & Marusic, I. 2010 Universal aspects of small-scale motions in turbulence. J. Fluid Mech. 662, 514539.
Ganapathisubramani, B., Lakshminarasimhan, K. & Clemens, N. T. 2008 Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J. Fluid Mech. 598, 141175.
George, W. K. & Hussein, H. J. 1991 Locally axisymmetric turbulence. J. Fluid Mech. 233, 123.
Gulitski, G., Kholmyansky, M., Kinzelbach, W., Lüthi, B., Tsinober, A. & Yorish, S. 2007 Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 1. Facilities, methods and some general results. J. Fluid Mech. 589, 5781.
Hearst, R., Buxton, O., Ganapathisubramani, B. & Lavoie, P. 2012 Experimental estimation of fluctuating velocity and scalar gradients in turbulence. Exp. Fluids 118.
Hierro, J. & Dopazo, C. 2003 Fourth-order statistical moments of the velocity gradient tensor in homogeneous, isotropic turbulence. Phys. Fluids 15 (11), 34343442.
Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A. & Eyink, G. 2008 A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. N31.
Lüthi, B., Holzner, M. & Tsinober, A. 2009 Expanding the $Q$ $R$ space to three dimensions. J. Fluid Mech. 641, 497507.
Meneveau, C. 2011 Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 43, 219245.
Ooi, A, Martin, J., Soria, J. & Chong, M. S. 1999 A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech. 381, 141174.
Perlman, E., Burns, R., Li, Y. & Meneveau, C. 2007 Data exploration of turbulence simulations using a database cluster. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC ’07, pp. 23:123:11. ACM.
Perry, A. E. & Chong, M. S. 1987 A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19, 125155.
Perry, A. E. & Chong, M. S. 1994 Topology of flow patterns in vortex motions and turbulence. Appl. Sci. Res. 53, 357374.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Siggia, E. D. 1981 Invariants for the one-point vorticity and strain rate correlation functions. Phys. Fluids 24 (11), 19341936.
Soria, J., Sondergaard, R., Cantwell, B. J., Chong, M. S. & Perry, A. E. 1994 A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6 (2), 871884.
Tavoularis, S., Bennett, J. C. & Corrsin, S. 1978 Velocity-derivative skewness in small Reynolds number, nearly isotropic turbulence. J. Fluid Mech. 88 (1), 6369.
Townsend, A. A. 1951 On the fine-scale structure of turbulence. Proc. R. Soc. Lond. Ser. A. Mathematical and Physical Sciences 208, 534542.
Wallace, J. M. & Vukoslavčević, P. V. 2010 Measurement of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 42, 157181.
Worth, N. A. 2010 Tomographic-PIV measurement of coherent dissipation scale structures. PhD thesis, Cambridge.
Worth, N. A. & Nickels, T. B. 2011 Some characteristics of thin shear layers in homogeneous turbulent flow. Phil. Trans. R. Soc. Lond. 369, 709722.
Worth, N., Nickels, T. & Swaminathan, N. 2010 A tomographic PIV resolution study based on homogeneous isotropic turbulence DNS data. Exp. Fluids 49, 637656.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed