Skip to main content
×
×
Home

Invariants of the velocity-gradient tensor in a spatially developing inhomogeneous turbulent flow

  • O. R. H. Buxton (a1), M. Breda (a1) and X. Chen (a1)
Abstract

Tomographic particle image velocimetry experiments were performed in the near field of the turbulent flow past a square cylinder. A classical Reynolds decomposition was performed on the resulting velocity fields into a time invariant mean flow and a fluctuating velocity field. This fluctuating velocity field was then further decomposed into coherent and residual/stochastic fluctuations. The statistical distributions of the second and third invariants of the velocity-gradient tensor were then computed at various streamwise locations, along the centreline of the flow and within the shear layers. These invariants were calculated from both the Reynolds-decomposed fluctuating velocity fields and the coherent and stochastic fluctuating velocity fields. The range of spatial locations probed incorporates regions of contrasting flow physics, including a mean recirculation region and separated shear layers, both upstream and downstream of the location of peak turbulence intensity along the centreline. These different flow physics are also reflected in the velocity gradients themselves with different topologies, as characterised by the statistical distributions of the constituent enstrophy and strain-rate invariants, for the three different fluctuating velocity fields. Despite these differing flow physics the ubiquitous self-similar ‘tear drop’-shaped joint probability density function between the second and third invariants of the velocity-gradient tensor is observed along the centreline and shear layer when calculated from both the Reynolds decomposed and the stochastic velocity fluctuations. These ‘tear drop’-shaped joint probability density functions are not, however, observed when calculated from the coherent velocity fluctuations. This ‘tear drop’ shape is classically associated with the statistical distribution of the velocity-gradient tensor invariants in fully developed turbulent flows in which there is no coherent dynamics present, and hence spectral peaks at low wavenumbers. The results presented in this manuscript, however, show that such ‘tear drops’ also exist in spatially developing inhomogeneous turbulent flows. This suggests that the ‘tear drop’ shape may not just be a universal feature of fully developed turbulence but of turbulent flows in general.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Invariants of the velocity-gradient tensor in a spatially developing inhomogeneous turbulent flow
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Invariants of the velocity-gradient tensor in a spatially developing inhomogeneous turbulent flow
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Invariants of the velocity-gradient tensor in a spatially developing inhomogeneous turbulent flow
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence: o.buxton@imperial.ac.uk
References
Hide All
Baj, P., Bruce, P. J. K. & Buxton, O. R. H. 2015 The triple decomposition of a fluctuating velocity field in a multiscale flow. Phys. Fluids 27 (7), 075104.
Batchelor, G. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.
Blackburn, H. M., Mansour, N. N. & Cantwell, B. J. 1996 Topology of fine-scale motions in turbulent channel flow. J. Fluid Mech. 310, 269292.
Brereton, G. J. & Kodal, A. 1992 A frequency-domain filtering technique for triple decomposition of unsteady turbulent flow. Trans. ASME J. Fluids Engng 114 (1), 4551.
Buxton, O. 2015 Modulation of the velocity gradient tensor by concurrent large-scale velocity fluctuations in a turbulent mixing layer. J. Fluid Mech. 777 (R1), 112.
Buxton, O. & Ganapathisubramani, B. 2010 Amplification of enstrophy in the far field of an axisymmetric turbulent jet. J. Fluid Mech. 651, 483502.
Buxton, O., Laizet, S. & Ganapathisubramani, B. 2011 The effects of resolution and noise on kinematic features of fine-scale turbulence. Exp. Fluids 51 (5), 14171437.
Cantwell, B. 1992 Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. Fluids A 4 (4), 782793.
Cantwell, B. J. 1993 On the behavior of velocity gradient tensor invariants in direct numerical simulations of turbulence. Phys. Fluids A 5 (8), 20082013.
Cantwell, B. & Coles, D. 1983 An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136 (1), 321374.
Chacin, J. & Cantwell, B. 2000 Dynamics of a low Reynolds number turbulent boundary layer. J. Fluid Mech. 404, 87115.
Elsinga, G. & Marusic, I. 2010 Universal aspects of small-scale motions in turbulence. J. Fluid Mech. 662, 514539.
Elsinga, G., Scarano, F., Wieneke, B. & van Oudheusden, B. 2006 Tomographic particle image velocimetry. Exp. Fluids 41 (6), 933947.
Ganapathisubramani, B., Lakshminarasimhan, K. & Clemens, N. 2007 Determination of complete velocity gradient tensor by using cinematographic stereoscopic PIV in a turbulent jet. Exp. Fluids 42, 923939.
Ganapathisubramani, B., Lakshminarasimhan, K. & Clemens, N. 2008 Investigation of three-dimensional structure of fine-scales in a turbulent jet by using cinematographic stereoscopic PIV. J. Fluid Mech. 598, 141175.
Gomes-Fernandes, R., Ganapathisubramani, B. & Vassilicos, J. 2014 Evolution of the velocity-gradient tensor in a spatially developing turbulent flow. J. Fluid Mech. 756, 252292.
Gomes-Fernandes, R., Ganapathisubramani, B. & Vassilicos, J. 2015 The energy cascade in near-field non-homogeneous non-isotropic turbulence. J. Fluid Mech. 771, 676705.
Herpin, S., Wong, C., Stanislas, M. & Soria, J. 2008 Stereoscopic PIV measurements of a turbulent boundary layer with a large spatial dynamic range. Exp. Fluids 45 (4), 745763.
Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41 (02), 241258.
Jiménez, J., Wray, A., Saffman, P. & Rogallo, R. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 6590.
Kolmogorov, A. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS 30 (4), 301305.
Kraichnan, R. H. 1974 On Kolmogorov’s inertial-range theories. J. Fluid Mech. 62 (02), 305330.
Laizet, S., Nedić, J. & Vassilicos, J. C. 2015 The spatial origin of 5/3 spectra in grid-generated turbulence. Phys. Fluids 27 (6), 065115.
van Oudheusden, B., Scarano, F., van Hinsberg, N. & Watt, D. 2005 Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp. Fluids 39 (1), 8698.
Perrin, R., Braza, M., Cid, E., Cazin, S., Barthet, A., Sevrain, A., Mockett, C. & Thiele, F. 2007 Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD. Exp. Fluids 43 (2), 341355.
Perrin, R., Braza, M., Cid, E., Cazin, S., Chassaing, P., Mockett, C., Reimann, T. & Thiele, F. 2008 Coherent and turbulent process analysis in the flow past a circular cylinder at high Reynolds number. J. Fluids Struct. 24, 13131325.
Pope, S. 2000 Turbulent Flows. Cambridge University Press.
Ruetsch, G. & Maxey, M. 1991 Small-scale features of vorticity and passive scalar fields in homogeneous isotropic turbulence. Phys. Fluids A 3 (6), 15871597.
de Silva, C. M., Philip, J. & Marusic, I. 2013 Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics. Exp. Fluids 54 (7), 117.
Soria, J., Sondergaard, R., Cantwell, B. J., Chong, M. S. & Perry, A. E. 1994 A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6 (2), 871884.
Taylor, G. 1938 Production and dissipation of vorticity in a turbulent fluid. Proc. R. Soc. Lond. A 164 (916), 1523.
Tsinober, A. 2009 An Informal Conceptual Introduction to Turbulence, 2nd edn. Springer.
Valente, P. C. & Vassilicos, J. C. 2012 Universal dissipation scaling for nonequilibrium turbulence. Phys. Rev. Lett. 108 (21), 214503.
Vieillefosse, P. 1982 Local interaction between vorticity and shear in a perfect incompressible fluid. J. Phys. (Paris) 43 (6), 837842.
Wieneke, B. 2008 Volume self-calibration for 3d particle image velocimetry. Exp. Fluids 45 (4), 549556.
Worth, N., Nickels, T. & Swaminathan, N. 2010 A tomographic PIV resolution study based on homogeneous isotropic turbulence DNS data. Exp. Fluids 49 (3), 637656.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 34
Total number of PDF views: 651 *
Loading metrics...

Abstract views

Total abstract views: 812 *
Loading metrics...

* Views captured on Cambridge Core between 15th March 2017 - 18th August 2018. This data will be updated every 24 hours.