Skip to main content
×
×
Home

Inverse Magnus effect on a rotating sphere: when and why

  • Jooha Kim (a1), Haecheon Choi (a1) (a2), Hyungmin Park (a1) and Jung Yul Yoo (a1)
Abstract

In some specific conditions, a flying spinning ball deflects in a direction opposite to that predicted by the Magnus effect, which is known as the inverse Magnus effect. To elucidate when and why this effect occurs, we measure the variations of the drag and lift forces on a rotating sphere and the corresponding flow field with the spin ratio (the ratio of the rotational velocity to the translational one). This counterintuitive phenomenon occurs because the boundary layer flow moving against the surface of a rotating sphere undergoes a transition to turbulence, whereas that moving with the rotating surface remains laminar. The turbulence energizes the flow and thus the main separation occurs farther downstream, inducing faster flow velocity there and generating negative lift force. Empirical formulae are derived to predict the location where the flow separates as a function of the Reynolds number and the spin ratio. Using the formulae derived, the condition for the onset of the inverse Magnus effect is suggested based on the negative lift generation mechanism.

Copyright
Corresponding author
Email address for correspondence: choi@snu.ac.kr
References
Hide All
Achenbach, E. 1972 Experiments on the flow past spheres at very high Reynolds numbers. J. Fluid Mech. 54, 565575.
Aoki, K., Kinoshita, Y., Nagase, J. & Nakayama, Y. 2003a Dependence of aerodynamic characteristics and flow pattern on surface structure of a baseball. J. Vis. 6, 185193.
Aoki, K., Ohike, A., Yamaguchi, K. & Nakayama, Y. 2003b Flying characteristics and flow pattern of a sphere with dimples. J. Vis. 6, 6776.
Barlow, J. B. & Domanski, M. J. 2008 Lift on stationary and rotating spheres under varying flow and surface conditions. AIAA J. 46, 19321936.
Briggs, L. J. 1959 Effect of spin and speed on the lateral deflection (curve) of a baseball; and the Magnus effect for smooth spheres. Am. J. Phys. 27, 589596.
Choi, J., Jeon, W.-P. & Choi, H. 2006 Mechanism of drag reduction by dimples on a sphere. Phys. Fluids 18, 041702.
Choi, H., Jeon, W.-P. & Kim, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113139.
Davies, J. M. 1949 The aerodynamics of golf balls. J. Appl. Phys. 20, 821828.
Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284, 19541960.
Jeon, S., Choi, J., Jeon, W.-P., Choi, H. & Park, J. 2004 Active control of flow over a sphere for drag reduction at a subcritical Reynolds number. J. Fluid Mech. 517, 113129.
Krahn, E. 1956 Negative Magnus force. J. Aeronaut. Sci. 23, 377378.
Kray, T., Franke, J. & Frank, W. 2012 Magnus effect on a rotating sphere at high Reynolds numbers. J. Wind Engng Ind. Aerodyn. 110, 19.
Maccoll, J. W. 1928 Aerodynamics of a spinning sphere. J. R. Aero. Soc. 28, 777798.
Magnus, G. 1853 Ueber die Abweichung der Geschosse, und: Ueber eine auffallende Erscheinung bei rotirenden Körpern. Ann. Phys. 164, 129.
Mehta, R. D. 1985 Aerodynamics of sports balls. Annu. Rev. Fluid Mech. 17, 151189.
Moore, F. K. 1958 On the separation of the unsteady laminar boundary layer. In Boundary Layer Research (ed. Görtler, H. G.), pp. 296311. Springer.
Morisseau, K. C. 1985 Marine application of Magnus effect devices. Nav. Engrs J. 97, 5157.
Muto, M., Tsubokura, M. & Oshima, N. 2012a Negative Magnus lift on a rotating sphere at around the critical Reynolds number. Phys. Fluids 24, 014102.
Muto, M., Tsubokura, M. & Oshima, N. 2012b Numerical visualization of boundary layer transition when negative Magnus effect occurs. J. Vis. 15, 261268.
Rott, N. 1956 Unsteady viscous flow in the vicinity of a stagnation point. Q. Appl. Maths 13, 444451.
Sears, W. R. 1956 Some recent developments in airfoil theory. J. Aeronaut. Sci. 23, 490499.
Seifert, J. 2012 A review of the Magnus effect in aeronautics. Prog. Aerosp. Sci. 55, 1745.
Son, K., Choi, J., Jeon, W.-P. & Choi, H. 2010 Effect of free-stream turbulence on the flow over a sphere. Phys. Fluids 22, 045101.
Son, K., Choi, J., Jeon, W.-P. & Choi, H. 2011 Mechanism of drag reduction by a surface trip wire on a sphere. J. Fluid Mech. 672, 411427.
Swanson, W. M. 1961 The Magnus effect: a summary of investigations to date. Trans. ASME J. Basic Engng 83, 461470.
Tanaka, T., Yamagata, K. & Tsuji, Y.1990 Experiment of fluid forces on a rotating sphere and spheroid. In Proceedings of the 2nd KSME–JSME Fluids Engineering Conference, Seoul, Korea, October, pp. 10–13.
Taneda, S. 1957 Negative Magnus effect. Rep. Res. Inst. Appl. Mech. 5, 123128.
Vogel, S. 2013 Comparative Biomechanics: Life’s Physical World. Princeton University Press.
Wauthy, G., Leponce, M., Banai, N., Sylin, G. & Lions, J.-C. 1998 The backward jump of a box moss mite. Proc. R. Soc. Lond. B 265, 22352242.
White, B. R. & Schulz, J. C. 1977 Magnus effect in saltation. J. Fluid Mech. 81, 497512.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed