Skip to main content Accessibility help

Investigation of tone generation in ideally expanded supersonic planar impinging jets using large-eddy simulation

  • Romain Gojon (a1), Christophe Bogey (a1) and Olivier Marsden (a1)


The generation of tones in a supersonic planar jet impinging on a flat plate normally has been investigated by performing compressible large-eddy simulations using low-dissipation and low-dispersion finite differences. At the exit of a straight nozzle of height $h$ , the jet is ideally expanded, and has a Mach number of 1.28 and a Reynolds number of $5\times 10^{4}$ . Four distances between the nozzle and the plate between $3.94h$ and $9.1h$ have been considered. Flow snapshots and mean velocity fields are first presented. The variations of turbulence intensities and of the convection velocity in the jet shear layers are then examined. The properties of the jet near fields are subsequently described, in particular by applying Fourier decomposition to the pressure fields. Several coexisting tones appear to be generated by aeroacoustic feedback loops establishing between the nozzle lip and the flat plate, which also lead to the presence of hydrodynamic–acoustic standing waves. The tone frequencies are consistent with those given by the aeroacoustic feedback model and with measurements for high-aspect-ratio rectangular jets. The jet oscillation modes at these frequencies are characterized, and found to agree with experimental data. Their symmetric or antisymmetric natures are shown to be well predicted by a wave analysis carried out using a vortex sheet model of the jet, providing the allowable frequency ranges for the upstream-propagating acoustic waves. Thus, it is possible, for an ideally expanded impinging planar jet to predict both the frequencies of the tones and the symmetric or antisymmetric nature of the corresponding oscillation modes by combining the aeroacoustic feedback model and the wave analysis.


Corresponding author

Email address for correspondence:


Hide All
Arthurs, D. & Ziada, S. 2012 Self-excited oscillations of a high-speed impinging planar jet. J. Fluids Struct. 34, 236258.
Baars, W. J. & Tinney, C. E.2013 Quantifying crackle-inducing acoustic shock-structures emitted by a fully-expanded mach 3 jet. AIAA Paper 2013-2081.
Baars, W. J. & Tinney, C. E. 2014 Shock-structures in the acoustic field of a mach 3 jet with crackle. J. Sound Vib. 333 (12), 25392553.
Berland, J., Bogey, C. & Bailly, C. 2007a Numerical study of screech generation in a planar supersonic jet. Phys. Fluids 19, 075105.
Berland, J., Bogey, C., Marsden, O. & Bailly, C. 2007b High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems. J. Comput. Phys. 224 (2), 637662.
Berman, C. H. & Williams, J. E. 1970 Instability of a two-dimensional compressible jet. J. Fluid Mech. 42 (1), 151159.
Bogey, C. & Bailly, C. 2004 A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194 (1), 194214.
Bogey, C. & Bailly, C. 2006 Large eddy simulations of transitional round jets: influence of the Reynolds number on flow development and energy dissipation. Phys. Fluids 18, 065101.
Bogey, C. & Bailly, C. 2009 Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation. J. Fluid Mech. 627, 129160.
Bogey, C., de Cacqueray, N. & Bailly, C. 2009 A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys. 228 (5), 14471465.
Bogey, C. & Marsden, O. 2016 Simulations of initially highly disturbed jets with experiment-like exit boundary layers. AIAA J. 54 (2), 12992016.
Bogey, C., Marsden, O. & Bailly, C. 2011 Large-eddy simulation of the flow and acoustic fields of a Reynolds number 105 subsonic jet with tripped exit boundary layers. Phys. Fluids 23, 035104.
Bogey, C., Marsden, O. & Bailly, C. 2012 Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 105 . J. Fluid Mech. 701, 352385.
Buchmann, N. A., Mitchell, D. M., Ingvorsen, K. M., Honnery, D. R. & Soria, J. 2011 High spatial resolution imaging of a supersonic underexpanded jet impinging on a flat plate. In 6th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, Canberra, Australia, 5–7 December 2011.
de Cacqueray, N. & Bogey, C. 2014 Noise of an overexpanded mach 3.3 jet: non-linear propagation effects and correlations with flow. Intl J. Aeroacoust. 13 (7), 607632.
de Cacqueray, N., Bogey, C. & Bailly, C. 2011 Investigation of a high-mach-number overexpanded jet using large-eddy simulation. AIAA J. 49 (10), 21712182.
Fauconnier, D., Bogey, C. & Dick, E. 2013 On the performance of relaxation filtering for large-eddy simulation. J. Turbul. 14 (1), 2249.
Ffowcs-Williams, J. E., Simson, J. & Virchis, V. J. 1975 Crackle: an annoying component of jet noise. J. Fluid Mech. 71 (02), 251271.
George, W. K., Abrahamsson, H., Eriksson, J., Karlsson, R. I., Löfdahl, L. & Wosnik, M. 2000 A similarity theory for the turbulent plane wall jet without external stream. J. Fluid Mech. 425, 367411.
Henderson, B., Bridges, J. & Wernet, M. 2005 An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets. J. Fluid Mech. 542, 115137.
Henderson, B. & Powell, A. 1993 Experiments concerning tones produced by an axisymmetric choked jet impinging on flat plates. J. Sound Vib. 168 (2), 307326.
Ho, C. M. & Nosseir, N. S. 1981 Dynamics of an impinging jet. Part 1. The feedback phenomenon. J. Fluid Mech. 105, 119142.
Hourigan, K., Rudman, M. & Brocher, E. 1996 The feedback loop in impinging two-dimensional high-subsonic and supersonic jets. Exp. Therm. Fluid Sci. 12 (2), 265270.
Irwin, H. P. A. H. 1973 Measurements in a self-preserving plane wall jet in a positive pressure gradient. J. Fluid Mech. 61 (1), 3363.
Kremer, F. & Bogey, C. 2015 Large-eddy simulation of turbulent channel flow using relaxation filtering: resolution requirement and Reynolds number effect. Comput. Fluids 17 (7), 1728.
Krothapalli, A. 1985 Discrete tones generated by an impinging underexpanded rectangular jet. AIAA J. 23 (12), 19101915.
Krothapalli, A., Rajkuperan, E., Alvi, F. & Lourenco, L. 1999 Flow field and noise characteristics of a supersonic impinging jet. J. Fluid Mech. 392, 155181.
Mack, L. M. 1990 On the inviscid acoustic-mode instability of supersonic shear flows. Theor. Comput. Fluid Dyn. 2 (2), 97123.
Mitchell, D. M., Honnery, D. R. & Soria, J. 2012 The visualization of the acoustic feedback loop in impinging underexpanded supersonic jet flows using ultra-high frame rate schlieren. J. Vis. 15 (4), 333341.
Norum, T. D. 1991 Supersonic rectangular jet impingement noise experiments. AIAA J. 29 (7), 10511057.
Nosseir, N. S. & Ho, C. M. 1982 Dynamics of an impinging jet. Part 2. The noise generation. J. Fluid Mech. 116, 379391.
Panda, J., Raman, G. & Zaman, K. B. M. Q.1997 Underexpanded screeching jets from circular, rectangular and elliptic nozzles. AIAA Paper 97-1623.
Panda, J. & Seasholtz, R. G. 1999 Measurement of shock structure and shock-vortex interaction in underexpanded jets using rayleigh scattering. Phys. Fluids 11 (12), 37613777.
Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.
Powell, A. 1953 On edge tones and associated phenomena. Acta Acust. 3, 233243.
Risborg, A. & Soria, J.2009 High-speed optical measurements of an underexpanded supersonic jet impinging on an inclined plate. In 28th International Congress on High-Speed Imaging and Photonics, 7126 (F), International Society for Optics and Photonics.
Rockwell, D. & Naudascher, E. 1978 Review-self-sustaining oscillations of flow past cavities. Trans. ASME J. Fluids Engng 100 (2), 152165.
Sabatini, R. & Bailly, C. 2014 Numerical algorithm for computing acoustic and vortical spatial instability waves. AIAA J. 53 (3), 692702.
Tam, C. K. W. & Ahuja, K. K. 1990 Theoretical model of discrete tone generation by impinging jets. J. Fluid Mech. 214, 6787.
Tam, C. K. W. & Dong, Z. 1994 Wall boundary conditions for high-order finite-difference schemes in computational aeroacoustics. Theor. Comput. Fluid Dyn. 6, 303322.
Tam, C. K. W. & Hu, F. Q. 1989 On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447483.
Tam, C. K. W. & Norum, T. D. 1992 Impingement tones of large aspect ratio supersonic rectangular jets. AIAA J. 30 (2), 304311.
Thurow, B., Samimy, M. & Lempert, W.2002 Structure of a supersonic impinging rectangular jet via real-time optical diagnostics. AIAA Paper 2002-2865.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed