Skip to main content Accessibility help
×
Home

Jetting of viscous droplets from cavitation-induced Rayleigh–Taylor instability

  • Qingyun Zeng (a1), Silvestre Roberto Gonzalez-Avila (a1), Sophie Ten Voorde (a1) and Claus-Dieter Ohl (a1) (a2)

Abstract

Liquid jetting and fragmentation are important in many industrial and medical applications. Here, we study the jetting from the surface of single liquid droplets undergoing internal volume oscillations. This is accomplished by an explosively expanding and collapsing vapour bubble within the droplet. We observe jets emerging from the droplet surface, which pinch off into finer secondary droplets. The jetting is excited by the spherical Rayleigh–Taylor instability where the radial acceleration is due to the oscillation of an internal bubble. We study this jetting and the effect of fluid viscosity experimentally and numerically. Experiments are carried out by levitating the droplet in an acoustic trap and generating a laser-induced cavitation bubble near the centre of the droplet. On the simulation side, the volume of fluid method (OpenFOAM) solves the compressible Navier–Stokes equations while accounting for surface tension and viscosity. Both two-dimensional (2-D) axisymmetric and 3-D simulations are performed and show good agreement with each other and the experimental observation. While the axisymmetric simulation reveals how the bubble dynamics results destabilizes the interface, only the 3-D simulation computes the geometrically correct slender jets. Overall, experiments and simulations show good agreement for the bubble dynamics, the onset of disturbances and the rapid ejection of filaments after bubble collapse. Additionally, an analytic model for the droplet surface perturbation growth is developed based on the spherical Rayleigh–Taylor instability analysis, which allows us to evaluate the surface stability over a large parameter space. The analytic model predicts correctly the onset of jetting as a function of Reynolds number and normalized internal bubble energy.

Copyright

Corresponding author

Email address for correspondence: claus-dieter.ohl@ovgu.de

References

Hide All
Agbaglah, G., Thoraval, M.-J., Thoroddsen, S. T., Zhang, L. V., Fezzaa, K. & Deegan, R. D. 2015 Drop impact into a deep pool: vortex shedding and jet formation. J. Fluid Mech. 764, R1.
Antkowiak, A., Bremond, N., Le Dizès, S. & Villermaux, E. 2007 Short-term dynamics of a density interface following an impact. J. Fluid Mech. 577, 241250.
Bell, G. I.1951 Taylor instability on cylinders and spheres in the small amplitude approximation. Tech. Rep. LA-1321. Los Alamos Scientific Laboratory, Los Alamos, NM.
Bergmann, R., Van Der Meer, D., Gekle, S., Van Der Bos, A. & Lohse, D. 2009 Controlled impact of a disk on a water surface: cavity dynamics. J. Fluid Mech. 633, 381409.
Binnie, A. M. 1953 The stability of the surface of a cavitation bubble. Math. Proc. Camb. Phil. Soc. 49, 151155.
Blake, J. R. & Gibson, D. C. 1981 Growth and collapse of a vapour cavity near a free surface. J. Fluid Mech. 111, 123140.
Boulton-Stone, J. M. & Blake, J. R. 1993 Gas bubbles bursting at a free surface. J. Fluid Mech. 254, 437466.
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.
Brenner, M. P., Hilgenfeldt, S. & Lohse, D. 2002 Single-bubble sonoluminescence. Rev. Mod. Phys. 74 (2), 425.
Brenner, M. P., Lohse, D. & Dupont, T. F. 1995 Bubble shape oscillations and the onset of sonoluminescence. Phys. Rev. Lett. 75 (5), 954.
Chahine, G. L. 1977 Interaction between an oscillating bubble and a free surface. Trans. ASME J. Fluids Engng 99 (4), 709716.
Daly, B. J. 1969 Numerical study of the effect of surface tension on interface instability. Phys. Fluids 12 (7), 13401354.
Duchemin, L., Popinet, S., Josserand, C. & Zaleski, S. 2002 Jet formation in bubbles bursting at a free surface. Phys. Fluids 14 (9), 30003008.
Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69 (3), 865.
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71 (3), 036601.
Elgowainy, A. & Ashgriz, N. 1997 The Rayleigh–Taylor instability of viscous fluid layers. Phys. Fluids 9 (6), 16351649.
Foresti, D., Nabavi, M. & Poulikakos, D. 2012 On the acoustic levitation stability behaviour of spherical and ellipsoidal particles. J. Fluid Mech. 709, 581592.
Gonzalez-Avila, S. R. & Ohl, C.-D. 2016 Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles. J. Fluid Mech. 805, 551576.
Gonzalez-Avila, S. R., Song, C. & Ohl, C.-D. 2015 Fast transient microjets induced by hemispherical cavitation bubbles. J. Fluid Mech. 767, 3151.
Greenshields, C. J.2015 OpenFOAM user guide. OpenFOAM Foundation Ltd, version 3(1).
Hilgenfeldt, S., Lohse, D. & Brenner, M. P. 1996 Phase diagrams for sonoluminescing bubbles. Phys. Fluids 8 (11), 28082826.
Inoue, C., Izato, Y.-i., Miyake, A. & Villermaux, E. 2017 Direct self-sustained fragmentation cascade of reactive droplets. Phys. Rev. Lett. 118, 074502.
Kiyama, A., Tagawa, Y., Ando, K. & Kameda, M. 2016 Effects of a water hammer and cavitation on jet formation in a test tube. J. Fluid Mech. 787, 224236.
Koch, M., Lechner, C., Reuter, F., Köhler, K., Mettin, R. & Lauterborn, W. 2016 Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM. Comput. Fluids 126, 7190.
Krechetnikov, R. 2009 Rayleigh–Taylor and Richtmyer–Meshkov instabilities of flat and curved interfaces. J. Fluid Mech. 625 (625), 387410.
Kull, H.-J. 1991 Theory of the Rayleigh–Taylor instability. Phys. Rep. 206 (5), 197325.
Longuet-Higgins, M. S. 1983 Bubbles, breaking waves and hyperbolic jets at a free surface. J. Fluid Mech. 127, 103121.
Marston, J. O. & Thoroddsen, S. T. 2015 Laser-induced micro-jetting from armored droplets. Exp. Fluids 56 (7), 140.
Obreschkow, D., Kobel, P., Dorsaz, N., De Bosset, A., Nicollier, C. & Farhat, M. 2006 Cavitation bubble dynamics inside liquid drops in microgravity. Phys. Rev. Lett. 97 (9), 094502.
Peters, I. R., Tagawa, Y., Oudalov, N., Sun, C., Prosperetti, A., Lohse, D. & van der Meer, D. 2013 Highly focused supersonic microjets: numerical simulations. J. Fluid Mech. 719, 587605.
Plesset, M. S. 1954 On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25 (1), 9698.
Prosperetti, A. 1977 Viscous effects on perturbed spherical flows. Q. Appl. Maths 34 (4), 339352.
Roberts, M. S. & Jacobs, J. W. 2016 The effects of forced small-wavelength, finite-bandwidth initial perturbations and miscibility on the turbulent Rayleigh–Taylor instability. J. Fluid Mech. 787, 5083.
Rusche, H.2003 Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD thesis, Imperial College, University of London.
Shi, W. T. & Apfel, R. E. 1996 Deformation and position of acoustically levitated liquid drops. J. Acoust. Soc. Am. 99 (4), 19771984.
Tagawa, Y., Oudalov, N., Visser, C. W., Peters, I. R., van der Meer, D., Sun, C., Prosperetti, A. & Lohse, D. 2012 Highly focused supersonic microjets. Phys. Rev. X 2 (3), 031002.
Taylor, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Part I. Proc. R. Soc. Lond. A 201, 192196.
Trinh, P. H., Kim, H., Hammoud, N., Howell, P. D., Chapman, S. J. & Stone, H. A. 2014 Curvature suppresses the Rayleigh–Taylor instability. Phys. Fluids 26 (5), 051704.
Ubbink, O.1997 Numerical prediction of two fluid systems with sharp interfaces. PhD thesis, Imperial College, University of London.
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39, 419446.
Weller, H. G, Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.
Yarin, A. L., Pfaffenlehner, M. & Tropea, C. 1998 On the acoustic levitation of droplets. J. Fluid Mech. 356, 6591.
Zeff, B. W., Kleber, B., Fineberg, J. & Lathrop, D. P. 2000 Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature 403 (6768), 401404.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Zeng et al. supplementary movie 1
Jetting of water droplet in experiment, simulation, Rdeq is 1.429 mm, laser energy is 2.2 mJ, movie of figure 5 (a).

 Video (429 KB)
429 KB
VIDEO
Movies

Zeng et al. supplementary movie 2
Jetting of water droplet in 2D axisymmetric simulation, Rdeq is 1.429 mm, movie of figure 5 (b).

 Video (1.7 MB)
1.7 MB
VIDEO
Movies

Zeng et al. supplementary movie 3
Jetting of water droplet in 3D simulation, Rdeq is 1.429 mm, movie of figure 5 (c).

 Video (3.5 MB)
3.5 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed