Skip to main content Accessibility help
×
Home

The kinematics of stretching and alignment of material elements in general flow fields

  • Eliot Dresselhaus (a1) and M. Tabor (a1)

Abstract

A rigorous, kinematic description of the stretching and alignment of infinitesimal material elements in general flow fields is presented. An evolution equation is derived, in the Lagrangian frame, for the alignment angles between a material element and the principal axes of strain. The equation identifies the precise roles played by the local angular velocity and the rotation of the strain axes in the alignment process and provides the framework in which to investigate the extent to which the straining field is ‘persistent’. This general kinematical picture is specialized to study line and vortex stretching in fluid flows and analytically predicts the numerically observed alignment of the vorticity vector with the intermediate strain axis. The alignment equations are solved exactly for a number of special flow fields and investigated numerically for the ABC and STF flows. The kinematic formalism and numerical phenomenology suggests the use of new criteria to analyse the material element stretching properties of large-scale numerical simulations.

Copyright

References

Hide All
Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier—Stokes turbulence. Phys. Fluids 30, 23432353.
Bajer, K. & Moffatt, H. K. 1990 On a class of steady confined Stokes flows with chaotic streamlines. J. Fluid Mech. 212, 337363.
Batchelor, G. K. 1952 The effect of homogeneous turbulence on material lines and surfaces. Proc. R. Soc. Lond. A 213, 349366.
Batchelor, G. K. & Townsend, A. A. 1956 Turbulent diffusion. In Surveys in Mechanics (ed. G. K. Batchelor & R. M. Davies), pp. 352399. Cambridge University Press.
Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1, 497504.
Cocke, W. J. 1969 Turbulent hydrodynamic line stretching: consequences of isotropy. Phys. Fluids 12, 24882492.
Cocke, W. J. 1971 Turbulent hydrodynamic line stretching: the random walk limit. Phys. Fluids 14, 16241628.
Dombre, T., Frisch, U., Greene, J. M., Hénon, M., Mehr, A. & Soward, A. M. 1986 Chaotic streamlines in the ABC flows. J. Fluid Mech. 167, 353391.
Drummond, I. T. & Münch, W. 1990 Turbulent stretching of line and surface elements. J. Fluid Mech. 215, 4559.
Girimaji, S. S. & Pope, S. B. 1990 Material element deformation in isotropic turbulence. J. Fluid Mech. 220, 427458.
Kraichnan, R. H. 1970 Diffusion by a random velocity field. Phys. Fluids 13, 2231.
Kraichnan, R. H. 1974 Convection of a passive scalar by a quasi-uniform random straining field. J. Fluid Mech. 64, 737762.
Majda, A. J. 1991 Vorticity, turbulence, and acoustics in fluid flow. SIAM Rev. 33, 349388.
Monin, A. M. & Yaglom, I. 1975 Statistical Fluid Mechanics, vol. 2. MIT Press.
Orszag, S. A. 1970 Comments on ‘Turbulent hydrodynamic line stretching: consequences of isotropy’. Phys. Fluids 13, 22032204.
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. 1986 Numerical Recipes. Cambridge University Press.
She, Z.-S., Jackson, E. & Orszag, S. A. 1991 Structure and dynamics of homogeneous turbulence: models and simulations. Proc. R. Soc. Lond. A 434, 101124.
Tabor, M. & Gennes, P. G. de 1986 A cascade theory of drag reduction. Europhys. Lett. 2, 519522.
Townsend, A. A. 1951 The diffusion of heat spots in isotropic turbulence. Proc. R. Soc. Lond. A 209, 418430.
Vieillefosse, P. 1982 Local interaction between vorticity and shear in a perfect incompressible fluid. J. Phys. Paris 43, 837842.
Vieillefosse, P. 1984 Internal motion of small element of fluid in an inviscid flow. Physica 125A, 150.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed