Skip to main content Accessibility help

Koopman analysis of the long-term evolution in a turbulent convection cell

  • Dimitrios Giannakis (a1), Anastasiya Kolchinskaya (a2), Dmitry Krasnov (a2) and Jörg Schumacher (a2)


We analyse the long-time evolution of the three-dimensional flow in a closed cubic turbulent Rayleigh–Bénard convection cell via a Koopman eigenfunction analysis. A data-driven basis derived from diffusion kernels known in machine learning is employed here to represent a regularized generator of the unitary Koopman group in the sense of a Galerkin approximation. The resulting Koopman eigenfunctions can be grouped into subsets in accordance with the discrete symmetries in a cubic box. In particular, a projection of the velocity field onto the first group of eigenfunctions reveals the four stable large-scale circulation (LSC) states in the convection cell. We recapture the preferential circulation rolls in diagonal corners and the short-term switching through roll states parallel to the side faces which have also been seen in other simulations and experiments. The diagonal macroscopic flow states can last as long as 1000 convective free-fall time units. In addition, we find that specific pairs of Koopman eigenfunctions in the secondary subset obey enhanced oscillatory fluctuations for particular stable diagonal states of the LSC. The corresponding velocity-field structures, such as corner vortices and swirls in the midplane, are also discussed via spatiotemporal reconstructions.


Corresponding author

Email address for correspondence:


Hide All
Arbabi, H. & Mezić, I. 2017 Ergodic theory, dynamic mode decomposition and computation of spectral properties of the Koopman operator. SIAM J. Appl. Dyn. Sys. 16, 20962126.
Aubry, N., Guyonnet, R. & Lima, R. 1991 Spatiotemporal analysis of complex signals: theory and applications. J. Stat. Phys. 64, 683739.
Babuška, I. & Osborn, J. 1991 Eigenvalue problems. In Finite Element Methods (Part 1), Handbook of Numerical Analysis (ed. Ciarlet, P. G. & Lions, J. L.), vol. II, pp. 641787. North-Holland.
Bai, K., Ji, D. & Brown, E. 2016 Ability of a low-dimensional model to predict geometry-dependent dynamics of large-scale coherent structures in turbulence. Phys. Rev. E 93, 023117.
Bailon-Cuba, J., Emran, M. S. & Schumacher, J. 2010 Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection. J. Fluid Mech. 655, 152173.
Berry, T., Cressman, R., Gregurić-Ferenček, Z. & Sauer, T. 2013 Time-scale separation from diffusion-mapped delay coordinates. SIAM J. Appl. Dyn. Syst. 12, 618649.
Berry, T., Giannakis, D. & Harlim, J. 2015 Nonparametric forecasting of low-dimensional dynamical systems. Phys. Rev. E 91, 032915.
Berry, T. & Sauer, T. 2016 Local kernels and the geometric structure of data. Appl. Comput. Harmon. Anal. 40 (3), 439469.
Brenowitz, N. D., Giannakis, D. & Majda, A. J. 2016 Nonlinear Laplacian spectral analysis of Rayleigh–Bénard convection. J. Comput. Phys. 315, 536553.
Broomhead, D. S. & King, G. P. 1986 Extracting qualitative dynamics from experimental data. Physica D 20 (2–3), 217236.
Brown, E. & Ahlers, G. 2006 Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 568, 351386.
Brunton, S. L., Brunton, B. W., Proctor, J. L., Kaiser, E. & Kutz, J. N. 2017 Chaos as an intermittently forced linear system. Nat. Commun. 8, 9.
Budisić, M., Mohr, R. & Mezić, I. 2012 Applied Koopmanism. Chaos 22, 047510.
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58.
Chong, K.-L. & Xia, K.-Q. 2016 Exploring the severely confined regime in Rayleigh–Bénard convection. J. Fluid Mech. 805, R4.
Coifman, R. R. & Lafon, S. 2006a Diffusion maps. Appl. Comput. Harmon. Anal. 21, 530.
Coifman, R. R. & Lafon, S. 2006b Geometric harmonics: a novel tool for multiscale out-of-sample extension of empirical functions. Appl. Comput. Harmon. Anal. 21, 3152.
Das, S. & Giannakis, D.2017 Delay-coordinate maps and the spectra of Koopman operators. arXiv:1706.08544.
Daya, Z. A. & Ecke, R. E. 2001 Does turbulent convection feel the shape of the container? Phys. Rev. Lett. 87, 184501.
Dellnitz, M. & Junge, O. 1999 On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36, 491515.
Eisner, T., Farkas, B., Haase, M. & Nagel, R. 2015 Operator Theoretic Aspects of Ergodic Theory, Graduate Texts in Mathematics, vol. 272. Springer.
Emran, M. S. & Schumacher, J. 2010 Lagrangian tracer dynamics in a closed cylindrical turbulent convection cell. Phys. Rev. E 82, 016303.
Emran, M. S. & Schumacher, J. 2015 Large-scale mean patterns in turbulent convection. J. Fluid Mech. 776, 96108.
Foroozani, N., Niemela, J. J., Armenio, V. & Sreenivasan, K. R. 2014 Influence of container shape on scaling of turbulent fluctuations in convection. Phys. Rev. E 90, 063003.
Foroozani, N., Niemela, J. J., Armenio, V. & Sreenivasan, K. R. 2017 Reorientations of the large-scale flow in turbulent convection in a cube. Phys. Rev. E 95, 033107.
Franke, B., Hwang, C.-R., Pai, H.-M. & Sheu, S. J. 2010 The behavior of the spectral gap under growing drift. Trans. Am. Math. Soc. 362 (3), 13251350.
Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi, F. & Yiou, P. 2002 Advanced spectral methods for climatic time series. Rev. Geophys. 40 (1), 3.
Giannakis, D. 2017 Data-driven spectral decomposition and forecasting of ergodic dynamical systems. Appl. Comput. Harmon. Anal. in press, doi:10.1016/j.acha.2017.09.001.
Giannakis, D. & Majda, A. J. 2011 Time series reconstruction via machine learning: revealing decadal variability and intermittency in the North Pacific sector of a coupled climate model. In Conference on Intelligent Data Understanding 2011. Mountain View, California. NASA.
Giannakis, D. & Majda, A. J. 2012 Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability. Proc. Natl. Acad. Sci. 109 (7), 22222227.
Giannakis, D. & Majda, A. J. 2013 Nonlinear Laplacian spectral analysis: capturing intermittent and low-frequency spatiotemporal patterns in high-dimensional data. Stat. Anal. Data Min. 6 (3), 180194.
Giannakis, D., Ourmazd, A., Slawinska, J. & Zhao, Z.2017 Spatiotemporal pattern extraction by spectral analysis of vector-valued observables. arXiv:1711.02798.
Giannakis, D., Slawinska, J. & Zhao, Z. 2015 Spatiotemporal feature extraction with data-driven Koopman operators. J. Mach. Learn. Res. 44, 103115.
Horn, S. & Schmid, P. J. 2017 Prograde, retrograde, and oscillatory modes in rotating Rayleigh–Bénard convection. J. Fluid Mech. 831, 182211.
Kaczorowski, M. & Xia, K.-Q. 2013 Turbulent flow in the bulk of Rayleigh–Bénard convection: small-scale properties in a cubic cell. J. Fluid Mech. 722, 596617.
Krasnov, D., Zikanov, O. & Boeck, T. 2011 Comparative study of finite difference approaches in simulation of magnetohydrodynamic turbulence at low magnetic Reynolds number. Comput. Fluids 50, 4659.
von Luxburg, U., Belkin, M. & Bousquet, O. 2008 Consistency of spectral clustering. Ann. Stat. 26 (2), 555586.
Mezić, I. 2005 Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41, 309325.
Mezić, I. 2013 Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45, 357378.
Mezić, I. & Banaszuk, A. 2004 Comparison of systems with complex behavior. Phys. D 197, 101133.
Palmer, R. G. 1982 Broken ergodicity. Adv. Phys. 31, 669735.
Pauluis, O. & Schumacher, J. 2010 Idealized moist Rayleigh–Bénard convection with piecewise linear equation of state. Commun. Math. Sci. 8, 295319.
Podvin, B. & Sergent, A. 2012 Proper orthogonal decomposition investigation of turbulent Rayleigh–Bénard convection in a rectangular cavity. Phys. Fluids 24, 105106.
Podvin, B. & Sergent, A. 2015 A large-scale investigation of wind reversal in a square Rayleigh–Bénard cell. J. Fluid Mech. 766, 172201.
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.
Scheel, J. D. & Schumacher, J. 2014 Local boundary layer scales in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 758, 344373.
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.
Schmid, P. J. & Sesterhenn, J. L. 2008 Dynamic mode decomposition of numerical and experimental data. In Bulletin of the American Physical Society, 61st APS-DFD Meeting, San Antonio, p. 208.
Shi, N., Emran, M. S. & Schumacher, J. 2012 Boundary layer structure in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 706, 533.
Slawinska, J. & Giannakis, D. 2016 Spatiotemporal pattern extraction with data-driven Koopman operators for convectively coupled equatorial waves. In Proceedings of the 6th International Workshop on Climate Informatics, Boulder, Colorado (ed. Banerjee, A., Ding, W., Dy, J., Lyubchich, V. & Rhines, A.), pp. 4952. National Center for Atmospheric Research.
Slawinska, J., Pauluis, O., Majda, A. J. & Grabowski, W. W. 2014 Multiscale interactions in an idealized Walker circulation: mean circulation and intraseasonal variability. J. Atmos. Sci. 71 (3), 953971.
Song, H., Brown, E., Hawkins, R. & Tong, P. 2014 Dynamics of the large-scale circulation of turbulent thermal convection in a horizontal cylinder. J. Fluid Mech. 740, 136167.
Tu, J. H., Rowley, C. W., Lucthenburg, C. M., Brunton, S. L. & Kutz, J. N. 2014 On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1 (2), 391421.
Vautard, R. & Ghil, M. 1989 Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Phys. D 35, 395424.
Williams, M. O., Kevrekidis, I. G. & Rowley, C. W. 2015a A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25, 13071346.
Williams, M. O., Rowley, C. M. & Kevrekidis, I. G. 2015b A kernel-based method for data-driven Koopman spectral analysis. J. Comput. Dyn. 2 (2), 247265.
Young, L.-S. 2002 What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108, 733754.
Zhao, Z. & Giannakis, D. 2016 Analog forecasting with dynamics-adapted kernels. Nonlinearity 29, 28882939.
Zhou, Q., Xi, H.-D., Zhou, S.-Q., Sun, C. & Xia, K.-Q. 2009 Oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection: the sloshing mode and its relationship with the torsional mode. J. Fluid Mech. 630, 367390.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed