Skip to main content

A Kriging-based elliptic extended anisotropic model for the turbulent boundary layer wall pressure spectrum

  • Myriam Slama (a1) (a2), Cédric Leblond (a2) and Pierre Sagaut (a1)

The present study addresses the computation of the wall pressure spectrum for a turbulent boundary layer flow without pressure gradient, at high Reynolds numbers, using a new model, the Kriging-based elliptic extended anisotropic model (KEEAM). A space–time solution to the Poisson equation for the wall pressure fluctuations is used. Both the turbulence–turbulence and turbulence–mean shear interactions are taken into account. It involves the mean velocity field and space–time velocity correlations which are modelled using Reynolds stresses and velocity correlation coefficients. We propose a new model, referred to as the extended anisotropic model, to evaluate the latter in all regions of the boundary layer. This model is an extension of the simplified anisotropic model of Gavin (PhD thesis, 2002, The Pennsylvania State University, University Park, PA) which was developed for the outer part of the boundary layer. It relies on a new expression for the spatial velocity correlation function and new parameters calibrated using the direct numerical simulation results of Sillero et al. (Phys. Fluids, vol. 26, 2014, 105109). Spatial correlation coefficients are related to space–time coefficients with the elliptic model of He & Zhang (Phys. Rev. E, vol. 73, 2006, 055303). The turbulent quantities necessary for the pressure computation are obtained by Reynolds-averaged Navier–Stokes solutions with a Reynolds stress turbulence model. Then, the pressure correlations are evaluated with a self-adaptive sampling strategy based on Kriging in order to reduce the computation time. The frequency and wavenumber–frequency wall pressure spectra obtained with the KEEAM agree well with empirical models developed for turbulent boundary layer flows without pressure gradient.

Corresponding author
Email address for correspondence:
Hide All
del Álamo, J. C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.
Archambeau, F., Méchitoua, N. & Sakiz, M. 2004 Code_Saturne: a finite volume code for the computation of turbulent incompressible flows. Intl J. Finite Volumes 1.
Aupoix, B. 2015 Extension of Lysak’s approach to evaluate the wall pressure spectrum for boundary layer flows. Flow Turbul. Combust. 94 (1), 6378.
Batchelor, G. K. 1951 Pressure fluctuations in isotropic turbulence. Math. Proc. Camb. Phil. Soc. 47 (2), 359374.
Batchelor, G. K. 1959 The Theory of Homogeneous Turbulence. Cambridge University Press.
Bertagnolio, F., Fischer, A. & Jun Zhu, W. 2014 Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling. J. Sound Vib. 333 (3), 9911010.
Blake, W. 1986 Mechanics of Flow-induced Sound and Vibration, Vols 1 and 2, Applied Mathematics and Mechanics. Academic Press.
Bonness, W. K., Capone, D. E. & Hambric, S. A. 2010 Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow. J. Sound Vib. 329 (20), 41664180.
Braconnier, T., Ferrier, M., Jouhaud, J.-C., Montagnac, M. & Sagaut, P. 2011 Towards an adaptive POD/SVD surrogate model for aeronautic design. Comput. Fluids 40 (1), 195209.
Bull, M. K. 1996 Wall-pressure fluctuations beneath turbulent boundary layers: some reflections on forty years of research. J. Sound Vib. 190 (3), 299315.
Chang, P. A., Piomelli, U. & Blake, W. K. 1999 Relationship between wall pressure and velocity-field sources. Phys. Fluids 11 (11), 34343448.
Chase, D. M. 1980 Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure. J. Sound Vib. 70 (1), 2967.
Chase, D. M. 1987 The character of the turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model. J. Sound Vib. 112 (1), 125147.
Chassaing, P. 2000 Turbulence en mécanique des fluides. Cépaduès-éditions.
Choi, H. & Moin, P. 1990 On the space–time characteristics of wall-pressure fluctuations. Phys. Fluids A 2 (8), 14501460.
Corcos, G. M. 1964 The structure of the turbulent pressure field in boundary-layer flows. J. Fluid Mech. 18, 353378.
Gavin, J. R.2002 Unsteady forces and sound caused by boundary layer turbulence entering a turbomachinery rotor. PhD thesis, The Pennsylvania State University, University Park, PA.
Goody, M. 2004 Empirical spectral model of surface pressure fluctuations. AIAA J. 42 (9), 17881794.
Graham, W. R. 1997 A comparison of models for the wavenumber-frequency spectrum of turbulent boundary layer pressures. J. Sound Vib. 206 (4), 541565.
Guo, L., Li, D., Zhang, X. & He, G.-W. 2012 LES prediction of space–time correlations in turbulent shear flows. Acta Mechanica Sin. 28 (4), 993998.
He, G., Jin, G. & Yang, Y. 2017 Space–time correlations and dynamic coupling in turbulent flows. Annu. Rev. Fluid Mech. 49 (1), 5170.
He, G.-W. & Zhang, J.-B. 2006 Elliptic model for space–time correlations in turbulent shear flows. Phys. Rev. E 73, 055303.
Hu, Z., Morfey, C. L. & Sandham, N. D. 2006 Wall pressure and shear stress spectra from direct simulations of channel flow. AIAA J. 44 (7), 15411549.
Hwang, Y. F., Bonness, W. K. & Hambric, S. A. 2009 Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra. J. Sound Vib. 319 (12), 199217.
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421451.
Kraichnan, R. H. 1956 Pressure fluctuations in turbulent flow over a flat plate. J. Acoust. Soc. Am. 28 (3), 378390.
Krige, D. G. 1951 A statistical approach to some basic mine valuation problems on the Witwatersrand. J. South. Afr. Inst. Min. Metall. 52 (6), 119139.
Lee, Y.-T., Blake, W. K. & Farabee, T. M. 2005 Modeling of wall pressure fluctuations based on time mean flow field. Trans. ASME J. Fluids Engng 127 (2), 233240.
Lee, Y.-T., Farabee, T. M. & Blake, W. K. 2009 Turbulence effects of wall-pressure fluctuations for reattached flow. Comput. Fluids 38 (5), 10331041.
Lesieur, M., Ossia, S. & Métais, O. 1999 Infrared pressure spectra in two- and three-dimensional isotropic incompressible turbulence. Phys. Fluids 11 (6), 15351543.
Lysak, P. D. 2005 Modeling the wall pressure spectrum in turbulent pipe flows. Trans. ASME J. Fluids Engng 128 (2), 216222.
Manceau, R. & Hanjalić, K. 2002 Elliptic blending model: a new near-wall Reynolds-stress turbulence closure. Phys. Fluids 14 (2), 744754.
Margheri, L. & Sagaut, P. 2016 A hybrid anchored-ANOVA – POD/Kriging method for uncertainty quantification in unsteady high-fidelity CFD simulations. J. Comput. Phys. 324, 137173.
Meldi, M. & Sagaut, P. 2013 Pressure statistics in self-similar freely decaying isotropic turbulence. J. Fluid Mech. 717, R2, 1–12.
Millionschikov, M. 1941 On the theory of homogeneous isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 615618.
Monté, S.2013 Evaluation du bruit hydrodynamique sur une antenne linéaire remorquée. PhD thesis, Université Pierre et Marie Curie.
Panton, R. L. & Linebarger, J. H. 1974 Wall pressure spectra calculations for equilibrium boundary layers. J. Fluid Mech. 65, 261287.
Peltier, L. J. & Hambric, S. A. 2007 Estimating turbulent-boundary-layer wall-pressure spectra from CFD RANS solutions. J. Fluids Struct. 23 (6), 920937.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Remmler, S., Christophe, J., Anthoine, J. & Moreau, S. 2010 Computation of wall pressure spectra from steady flow data for noise prediction. AIAA J. 48 (9), 19972007.
Renard, N. & Deck, S. 2015 On the scale-dependent turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds number Re 𝜃 = 13 000. J. Fluid Mech. 775, 105148.
Rotta, J. C. 1962 Turbulent boundary layers in incompressible flow. Prog. Aerosp. Sci. 2 (1), 195.
Rozenberg, Y., Robert, G. & Moreau, S. 2012 Wall-pressure spectral model including the adverse pressure gradient effects. AIAA J. 50 (10), 21682179.
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.
Sillero, J. A., Jiménez, J. & Moser, R. D. 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to +2000. Phys. Fluids 25, 105102.
Sillero, J. A., Jiménez, J. & Moser, R. D. 2014 Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to 𝛿 + ≈2000. Phys. Fluids 26, 105109.
Smol’yakov, A. V. 2000 Calculation of the spectra of pseudosound wall-pressure fluctuations in turbulent boundary layers. Acoust. Phys. 46 (3), 342347.
Smol’yakov, A. V. 2006 A new model for the cross spectrum and wavenumber-frequency spectrum of turbulent pressure fluctuations in a boundary layer. Acoust. Phys. 52 (3), 331337.
Stalnov, O., Paruchuri, C. & Joseph, P. 2015 Prediction of broadband trailing-edge noise based on Blake model and Amiet theory. In 21st AIAA/CEAS Aeroacoustics Conference, AIAA Aviation, pp. 20152526. AIAA.
Taylor, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164 (919), 476490.
Townsend, A. A. 1980 The Structure of Turbulent Shear Flow. Cambridge University Press.
Tutkun, M., George, W. K., Delville, J., Stanislas, M., Johansson, P. B. V., Foucaut, J.-M. & Coudert, S. 2009 Two-point correlations in high Reynolds number flat plate turbulent boundary layers. J. Turbul. 10, N21.
Wallace, J. M. 2014 Space–time correlations in turbulent flow: a review. Theor. Appl. Mech. Lett. 4, 022003.
Wang, M., Moreau, S., Iaccarino, G. & Roger, M. 2009 LES prediction of wall-pressure fluctuations and noise of a low-speed airfoil. Intl J. Aeroacoust. 8 (3), 177197.
Wang, W., Guan, X.-L. & Jiang, N. 2014 TRPIV investigation of space–time correlation in turbulent flows over flat and wavy walls. Acta Mechanica Sin. 30 (4), 468479.
Wills, J. A. B. 1971 Measurements of the wave-number/phase velocity spectrum of wall pressure beneath a turbulent boundary layer. J. Fluid Mech. 45 (1), 6590.
Zhao, X. & He, G.-W. 2009 Space–time correlations of fluctuating velocities in turbulent shear flows. Phys. Rev. E 79, 046316.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed