Bernard, D., Gawȩdzki, K. & Kupiainen, A.
1998
Slow modes in passive advection. J. Stat. Phys.
90, 519–569.

Buaria, D., Yeung, P. K. & Sawford, B. L.
2016
A Lagrangian study of turbulent mixing: forward and backward dispersion of molecular trajectories in isotropic turbulence. J. Fluid Mech.
799, 352–382.

Burdzy, K.
2009
Differentiability of stochastic flow of reflected Brownian motions. Electron. J. Probab.
14, 2182–2240.

Burdzy, K., Chen, Z.-Q. & Sylvester, J.
2004
The heat equation and reflected Brownian motion in time-dependent domains. Ann. Prob.
32 (1B), 775–804.

Cadot, O., Couder, Y., Daerr, A., Douady, S. & Tsinober, A.
1997
Energy injection in closed turbulent flows: stirring through boundary layers versus inertial stirring. Phys. Rev. E
56 (1), 427–433.

Constantin, P. & Iyer, G.
2011
A stochastic-Lagrangian approach to the Navier–Stokes equations in domains with boundary. Ann. Appl. Probab.
21, 1466–1492.

Corrsin, S.1953 Remarks on turbulent heat transfer. In *Proceeding of the Thermodynamics Symposium*, pp. 5–30. University of Iowa.

Drivas, T. D. & Eyink, G. L.2017 A Lagrangian fluctuation–dissipation relation for scalar turbulence, I. Flows with no bounding walls. *J. Fluid Mech.* (submitted) arXiv:1606.00729.
Erdélyi, A.1954 *Tables of Integral Transforms: Based, in Part, on Notes Left by Harry Bateman, California Institute of Technology. Bateman Manuscript Project* (ed. A. Erdélyi), W. Magnus, F. Oberhettinger, F. G. Tricomi, research associates, vol. 1. McGraw-Hill.

Eyink, G. L.
2008
Turbulent flow in pipes and channels as cross-stream ‘inverse cascades’ of vorticity. Phys. Fluids
20 (12), 125101.

Eyink, G. L. & Drivas, T. D.
2017
A Lagrangian fluctuation–dissipation relation for scalar turbulence, III. Turbulent Rayleigh–Bénard convection. J. Fluid Mech. (submitted) arXiv:1703.09604.
Freĭdlin, M. I.
1985
Functional Integration and Partial Differential Equations. Princeton University Press.

Friedman, A.
2006
Stochastic Differential Equations and Applications. Dover.

Graham, J., Kanov, K., Yang, X. I. A., Lee, M., Malaya, N., Lalescu, C. C., Burns, R., Eyink, G., Szalay, A. & Moser, R. D.
2016
A Web services accessible database of turbulent channel flow and its use for testing a new integral wall model for LES. J. Turbul.
17 (2), 181–215.

Hsu, P.
1986
Brownian exit distribution of a ball. In Seminar on Stochastic Processes, 1985, pp. 108–116. Springer.

Huggins, E. R.
1970
Energy-dissipation theorem and detailed Josephson equation for ideal incompressible fluids. Phys. Rev. A
1 (2), 332.

Karatzas, I. & Shreve, S. E.
1991
Brownian Motion and Stochastic Calculus. Springer.

Karlin, S. & Taylor, H. E.
1981
A Second Course in Stochastic Processes. Elsevier Science.

Karunamuni, R. J & Alberts, T.
2005
On boundary correction in Kernel density estimation. Stat. Meth.
2 (3), 191–212.

Katznelson, Y.
2004
An Introduction to Harmonic Analysis. Cambridge University Press.

Keanini, R. G.
2007
Random walk methods for scalar transport problems subject to Dirichlet, Neumann and mixed boundary conditions. Proc. R. Soc. Lond. A
463, 435–460.

Kline, S. J., Reynolds, W. C., Schraub, F. A. & Rundstadler, P. W.
1967
The structure of turbulent boundary layers. J. Fluid Mech.
30, 74l–773.

Kraichnan, R. H.
1962
Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids
5 (11), 1374–1389.

Kraichnan, R. H.
1968
Small-scale structure of a scalar field convected by turbulence. Phys. Fluids
11, 945–953.

Kunita, H.
1997
Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics, vol. 24. Cambridge University Press.

Lépingle, D.
1995
Euler scheme for reflected stochastic differential equations. Math. Comput. Simul.
38 (1), 119–126.

Lions, P.-L. & Sznitman, A. S.
1984
Stochastic differential equations with reflecting boundary conditions. Commun. Pure Appl. Maths
37 (4), 511–537.

Mil’shtein, G. N.
1996
Application of the numerical integration of stochastic equations to solving boundary-value problems with Neumann’s boundary conditions. Teoriya Veroyatnostei i ee Primeneniya
41 (1), 210–218.

Ng, E. W. & Geller, M.
1969
A table of integrals of the error functions. J. Res. Natl Bur. Stand.
73 (1), 1–20.

Niemela, J. J. & Sreenivasan, K. R.
2003
Confined turbulent convection. J. Fluid Mech.
481, 355–384.

Oksendal, B.
2013
Stochastic Differential Equations: An Introduction with Applications. Springer Science & Business Media.

Pilipenko, A.
2014
An Introduction to Stochastic Differential Equations with Reflection. Potsdam University Press.

Pilipenko, A. Yu.
2005
Properties of the flows generated by stochastic equations with reflection. Ukr. Math. J.
57 (8), 1262–1274.

Richardson, L. F.
1926
Atmospheric diffusion shown on a distance-neighbor graph. Proc. R. Soc. Lond. A
110, 709–737.

Rogers, L. C. G. & Williams, D.
2000
Diffusions, Markov Processes and Martingales: Volume 2, Itô Calculus. Cambridge University Press.

Schumacher, J.
2008
Lagrangian dispersion and heat transport in convective turbulence. Phys. Rev. Lett.
100 (13), 134502.

Schütz, S. & Bodenschatz, E.
2016
Two-particle dispersion in weakly turbulent thermal convection. New J. Phys.
18, 065007.

Słomiński, L.
2013
Weak and strong approximations of reflected diffusions via penalization methods. Stoch. Proc. Appl.
123 (3), 752–763.

Soner, H. M.
2007
Stochastic representations for nonlinear parabolic PDEs. In Handbook of Differential Equations: Evolutionary Equations, vol. 3, pp. 477–526.

Spiegel, E. A.
1971
Convection in stars: I. Basic Boussinesq convection. Annu. Rev. Astron. Astrophys.
9 (1), 323–352.

Stroock, D. W. & Varadhan, S. S.
1971
Diffusion processes with boundary conditions. Commun. Pure Appl. Maths
24 (2), 147–225.

Taylor, G. I.
1932
The transport of vorticity and heat through fluids in turbulent motion. Proc. R. Soc. Lond. A
135 (828), 685–702.

Tsinober, A.
2009
An Informal Conceptual Introduction to Turbulence. Springer.