Anfossi, D., Degrazia, G., Ferrero, E., Gryning, S. E., Morselli, M. G. & Trini Castelli, S. 2000 Estimation of the Lagrangian structure function constant C _{0} from surface-layer wind data. Boundary-Layer Met. 95, 249–270.
Anselmet, F., Antonia, R. A. & Danaila, L. 2001 Turbulent flows and intermittency in laboratory experiments. Planet. Space Sci. 49, 1177–1191.
Antonia, R. A., Ould-Rouis, M., Zhu, Y. & Anselmet, F. 1997 Fourth-order moments of longitudinal- and transverse-velocity structure functions. Europhys. Lett. 37, 85–90.
Antonia, R. A., Satyaprakash, B. R. & Chambers, A. J. 1982 Reynolds number dependence of velocity structure functions in turbulent shear flows. Phys. Fluids 25, 29–37.
Batchelor, G. K. 1950 The application of the similarity theory of turbulence to atmospheric diffusion. Q. J. R. Met. Soc. 76, 133–146.
Berg, J., Lüthi, B., Mann, J. & Ott, S. 2006 Backwards and forwards relative dispersion in turbulent flow: an experimental investigation. Phys. Rev. E 74, 016304–1/7.
Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A. & Toschi, F. 2005 Lagrangian statistics of particle pairs in homogeneous isotropic turbulence. Phys. Fluids 17 (11), 115101–1/9.
Boffetta, G. & Sokolov, I. M. 2002 Relative dispersion in fully developed turbulence: the Richardson's law and intermittency corrections. Phys. Rev. Lett. 88 (9), 094501–1/4.
Borgas, M. S. & Sawford, B. L. 1991 The small-scale structure of acceleration correlations and its role in the statistical theory of turbulent dispersion. J. Fluid Mech. 228, 295–320.
Borgas, M. S. & Sawford, B. L. 1994 A family of stochastic models for two-particle dispersion in isotropic homogeneous stationary turbulence. J. Fluid Mech. 279, 69–99.
Borgas, M. S. & Yeung, P. K. 1998 Conditional fluid–particle accelerations in turbulence. Theoret. Comput. Fluid Dyn. 11, 69–93.
Borgas, M. S. & Yeung, P. K. 2004 Relative dispersion in isotropic turbulence. Part 2. A new stochastic model with Reynolds-number dependence. J. Fluid Mech. 503, 125–160.
Borgas, M. S., Flesch, T. K. & Sawford, B. L. 1997 Turbulent dispersion with broken reflectional symmetry. J. Fluid Mech. 332, 141–156.
Du, S., Wilson, J. D. & Yee, E. 1994 On the moments approximation method for constructing a Lagrangian stochastic model. Boundary-Layer Met. 70, 273–292.
Flesch, T. K. & Wilson, J. D. 1992 A two-dimensional trajectory-simulation model for non-Gaussian, inhomogeneous turbulence within plant canopies. Boundary-Layer Met. 61, 349–374.
Franzese, P. & Borgas, M. S. 2002 A simple relative dispersion model for concentration fluctuations in contaminant clouds. J. Appl. Met. 41, 1101–1111.
Franzese, P. & Cassiani, M. 2007 A statistical theory of turbulent relative dispersion. J. Fluid Mech. 571, 391–417.
Frisch, U. 1996 Turbulence. The Legacy of A. N. Kolmogorov. Cambridge University Press.
Gardiner, C. W. 1990 Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd edn.Springer.
Heppe, B. M. O. 1998 Generalized Langevin equation for relative turbulent dispersion. J. Fluid Mech. 357, 167–198.
Hill, R. J. 2002 Exact second-order structure–function relationships. J. Fluid Mech. 468, 317–326.
Hill, R. J. & Boratav, O. N. 2001 Next-order structure–function equations. Phys. Fluids 13, 276–283.
Hill, R. J. & Wilczak, J. M. 1995 Pressure structure functions and spectra for locally isotropic turbulence. J. Fluid Mech. 296, 247–269.
Hill, R. J. & Wilczak, J. M. 2001 Fourth-order velocity statistics. Fluid Dyn. Res. 28, 1–22.
Ishihara, T. & Kaneda, Y. 2002 Relative diffusion of a pair of fluid particles in the inertial subrange of turbulence. Phys. Fluids 14, L69–L72.
Kaplan, H. & Dinar, N. 1993 A three-dimensional model for calculating the concentration distribution in inhomogeneous turbulence. Boundary-Layer Met. 62, 217–245.
Kurbanmuradov, O. A. 1997 Stochastic Lagrangian models for two-particle relative dispersion in high-Reynolds number turbulence. Monte Carlo Meth. Applic. 3, 37–52.
Kurbanmuradov, O. A. & Sabelfeld, K. K. 1995 Stochastic Lagrangian models of relative dispersion of a pair of fluid particles in turbulent flows. Monte Carlo Meth. Applic. 1, 101–136.
Kurbanmuradov, O. A., Sabelfeld, K. K. & Koluhin, D. 1997 Stochastic Lagrangian models for two-particle motion in turbulent flows. Monte Carlo Meth. Applic. 3, 199–223.
Kurbanmuradov, O. A., Orszag, S. A., Sabelfeld, K. K. & Yeung, P. K. 2001 Analysis of relative dispersion of two particles by Lagrangian stochastic models and DNS methods. Monte Carlo Meth. Applic. 7, 245–264.
Landau, L. D. & Lifshitz, E. M. 1960 Mechanics. Pergamon.
Li, Y. & Meneveau, C. 2005 Origin of non-Gaussian statistics in hydrodynamic turbulence. Phys. Rev. Lett. 95, 164502–1/4.
Li, Y. & Menevau, C. 2006 Intermittency trends and Lagrangian evolution of non-Gaussian statistics in turbulent flow and scalar transport. J. Fluid Mech. 558, 133–142.
Maurizi, A., Pagnini, G. & Tampieri, F. 2004 The dependence of relative dispersion on turbulence scales in Lagrangian stochastic models. Phys. Rev. E 69, 037301–1/4.
Maurizi, A., Pagnini, G. & Tampieri, F. 2006 Turbulence scale dependece of the Richardson constant in Lagrangian stochastic models. Boundary-Layer Met. 118, 55–68.
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics, vol. 1. MIT Press.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. MIT Press.
Monti, P. & Leuzzi, G. 1996 A closure to derive a three-dimensional well-mixed trajectory-model for non-Gaussian, inhomogeneous turbulence. Boundary-Layer Met. 80, 311–331.
Narasimhan, M. N. L. 1993 Principles of Continuum Mechanics. John Wiley.
Nelkin, M. & Chen, S. 1998 The scaling of pressure in isotropic turbulence. Phys. Fluids 10, 2119–2121.
Novikov, E. A. 1986 The Lagrangian–Eulerian probability relations and the random force method for nonhomogeneous turbulence. Phys. Fluids 29 (12), 3907–3909.
Novikov, E. A. 1989 Two-particle description of turbulence, Markov property, and intermittency. Phys. Fluids A 1 2, 326–330.
Novikov, E. A. 1992 Probability distribution for three-dimensional vectors of velocity increments in turbulent flows. Phys. Rev. A 46, R6147–R6149.
Obukhov, A. M. 1941 Energy distribution in the spectrum of turbulent flow. Izv. Akad. Nauk. SSSR Geogr. Geofiz. 5, 453–466.
Ott, S. & Mann, J. 2000 An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent flow. J. Fluid Mech. 422, 207–223.
Ould-Rouis, M., Antonia, R. A., Zhu, Y. & Anselmet, F. 1996 Turbulent pressure structure function. Phys. Rev. Lett. 77, 2222–2224.
Pagnini, G. 2005 Modelli stocastici per la dispersione turbolenta degli inquinanti nei fluidi geofisici. PhD thesis, University of Urbino.
Pearson, B. R. & Antonia, R. A. 2001 Reynolds-number dependence of turbulent velocity and pressure increments. J. Fluid Mech. 444, 343–382.
Pedrizzetti, G. 1999 Quadratic Markov modeling for intermittent turbulence. Phys. Fluids 11 (6), 1694–1696.
Pedrizzetti, G. & Novikov, E. A. 1994 On Markov modelling of turbulence. J. Fluid Mech. 280, 69–93.
Pope, S. 1985 PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192.
Praskovsky, A. & Oncley, S. 1994 Measurements of the Kolmogorov constant and intermittency exponent at very high Reynolds numbers. Phys. Fluids 6, 2886–2888.
Reynolds, A. M. 1998 On trajectory curvature as a selection criterion for valid Lagrangian stochastic dispersion models. Boundary-Layer Met. 88, 77–86.
Reynolds, A. M. 1999 a On the non-uniqueness of Lagrangian stochastic models. Fluid Dyn. Res. 25, 217–229.
Reynolds, A. M. 1999 b The relative dispersion of particle pairs in stationary homogeneous turbulence. J. Appl. Met. 38, 1384–1390.
Reynolds, A. M. 2002 On the dynamical content of Lagrangian stochastic models in the well-mixed class. Boundary-Layer Met. 103, 143–162.
Richardson, L. F. 1926 Atmospheric diffusion shown on a distance-neighbor graph. Proc. R. Soc. Lond. A 110, 709–737.
Risken, H. 1989 The Fokker–Planck Equation. Methods of Solution and Applications, 2nd edn.Springer.
Sabelfeld, K. K. & Kurbanmuradov, O. A. 1997 Stochastic Lagrangian models for two-particle motion in turbulent flows. Monte Carlo Meth. Applic. 3, 53–72.
Sabelfeld, K. K. & Kurbanmuradov, O. A. 1998 Two-particle stochastic Eulerian–Lagrangian models of turbulent dispersion. Math. Comput. Simulation 47, 429–440.
Sawford, B. L. 1999 Rotation of trajectories in Lagrangian stochastic models of turbulent dispersion. Boundary-Layer Met. 93, 411–424.
Sawford, B. L. 2001 Turbulent relative dispersion. Annu. Rev. Fluid Mech. 33, 289–317.
Sawford, B. L. 2006 A study of the connection between exit-time statistics and relative dispersion using a simple Lagrangian stochastic model. J. Turbulence 7 (13), 1–10.
Sawford, B. L. & Borgas, M. S. 1994 On the continuity of stochastic models for the Lagrangian velocity in turbulent. Physica D 76, 297–311.
Sawford, B. L. & Yeung, P. K. 2000 Eulerian acceleration statistics as a discriminator between Lagrangian stochastic models in uniform shear flow. Phys. Fluids 12 (8), 2033–424.
Sawford, B. L. & Yeung, P. K. 2001 Lagrangian statistics in uniform shear flow: direct numerical simulation and Lagrangian stochastic models. Phys. Fluids 13 (9), 2627–2634.
Sawford, B. L., Yeung, P. K. & Borgas, M. S. 2005 Comparison of backwards and forwards relative dispersion in turbulence. Phys. Fluids 17 (9), 095109–1/9.
Sawford, B. L., Yeung, P. K. & Hackl, J. F. 2008 Reynolds number dependence of relative dispersion statistics in isotropic turbulence. Phys. Fluids 20 (6), 065111–1/13.
She, Z. & Leveque, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. E 72, 336–339.
Sneddon, I. N. 1972 The Use of Integral Transform. McGraw–Hill.
Sreenivasan, K. R. 1995 On the universality of the Kolmogorov constant. Phys. Fluids 7, 2778–2784.
Sreenivasan, K. R. & Kailasnath, P. 1993 An update on the intermittency exponent in turbulence. Phys. Fluids A 5, 512–514.
Tennekes, H. 1975 Eulerian–Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67, 561–567.
Tennekes, H. 1982 Similarity relations, scaling laws and spectral dynamics. In Atmospheric Turbulence and Air Pollution Modeling (ed. Nieuwstadt, F. T. M. & van Dop, H.), pp. 37–68. Reidel.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Thomson, D. J. 1987 Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 180, 529–556.
Thomson, D. J. 1990 A stochastic model for the motion of particle pairs in isotropic high-Reynolds-number turbulence, and its application to the problem of concentration variance. J. Fluid Mech. 210, 113–153.
Wilson, J. D. & Flesch, T. K. 1997 Trajectory curvature as a selection criterion for valid Lagrangian stochastic models. Boundary-Layer Met. 84, 411–425.
Yeung, P. K. & Borgas, M. S. 2004 Relative dispersion in isotropic turbulence. Part 1. Direct numerical simulations and Reynolds-number dependence. J. Fluid Mech. 503, 93–124.