Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T17:39:51.537Z Has data issue: false hasContentIssue false

Laminar flow past an abruptly accelerated elliptic cylinder at 45° incidence

Published online by Cambridge University Press:  29 March 2006

H. J. Lugt
Affiliation:
Naval Ship Research and Development Center, Washington D.C. 20034
H. J. Haussling
Affiliation:
Naval Ship Research and Development Center, Washington D.C. 20034

Abstract

Numerical solutions for laminar incompressible fluid flows past an abruptly started elliptic cylinder at 45° incidence are presented. Various finite-difference schemes for the stream-function/vorticity formulation are used and their merits briefly discussed. Almost steady-state solutions are obtained for Re = 15 and 30, whereas for Re = 200 a Kármán vortex street develops. The transient period from the start to the steady or quasi-steady state is investigated in terms of patterns of streamlines and lines of constant vorticity and drag, lift and moment coefficients.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berger, E. & Wille, R. 1972 Periodic flow phenomena Ann. Rev. Fluid Mech. 4, 313.Google Scholar
Buzbee, B. L., Golub, G. H. & Nielson, C. W. 1970 On direct methods for solving Poisson's equations SIAM J. Numer. Anal. 7, 627.Google Scholar
Dawson, C. & Marcus, M. 1970 DMC - a computer code to simulate viscous flow about arbitrarily shaped bodies. Proc. 1970 Heat Transfer & Fluid Mech. Inst., p. 323. Stanford University Press.
Dumitrescu, D. & Cazacu, M. D. 1970 Theoretische und experimentelle Betrachtungen über die Strömung zäher Flüssigkeiten um eine Platte bei kleinen und mittleren Reynoldszahlen Z. angew. Math. Mech. 50, 257.Google Scholar
Görtler, H. 1948 Grenzschichtentstehung an Zylindern bei Anfahrt aus der Ruhe Arch. Math. 1, 138.Google Scholar
Harrison, W. J. 1924 On the motion of spheres, circular and elliptic cylinders through viscous liquid. Trans. Camb. Phil. Soc. 23.Google Scholar
Hockney, R. W. 1970 The potential calculation and some applications Methods in Comp. Phys. 9, 135.Google Scholar
Honji, H. 1972 Starting flows past spheres and elliptic cylinders Rep. Res. Inst. Appl. Mech., Kyushu University, 19, 271.Google Scholar
Krzywoblocki, M. Z. v. 1966 Vortex streets in fluids. In Applied Mechanics Surveys (ed. M. N. Abramson et al.), p. 885. Washington: Spartan Books.
Lamb, H. 1945 Hydrodynamics, 6th edn. Dover.
Lugt, H. J. 1968 The spectrum of the final decay of localized disturbances in a viscous fluid. Naval Ship R. & D. Center Rep. no. 2785.Google Scholar
Lugt, H. J. 1972 Entstehung und Ausbreitung von Wirbeln unter der ‘Perfect-Slip’ Bedingung. Dtsch. Luft- & Raumfahrt, Forschungsbericht, no. 72–27, p. 259.Google Scholar
Lugt, H. J. & Haussling, H. J. 1971 Laminar flows past a flat plate at various angles of attack. Lecture Notes in Physics, vol. 8, p. 78. Springer.
Lugt, H. J. & Haussling, H. J. 1972 Transient Ekman and Stewartson layers in a rotating tank with a spinning cover. Recent Research on Unsteady Boundary Layers, p. 1366. Québec: Laval University Press.
Lugt, H. J. & Ohring, S. 1971 Laminar flows past an infinitely thin disk. Naval Ship R. & D. Center Rep. no. 3654.Google Scholar
Lugt, H. J. & Ohring, S. 1973 Efficiency of numerical methods in solving the timedependent two-dimensional Navier-Stokes equations. Proc. Int. Conf. on Numerical Methods in Fluid Dyn., Southampton.
Lugt, H. J. & Rimon, Y. 1970 Finite-difference approximations of the vorticity of laminar flows at solid surfaces. Naval Ship R. & D. Center Rep. no. 3306.Google Scholar
Mehta, U. B. & Lavan, Z. 1972 Starting vortex, separation bubbles and stall - a numerical study of laminar unsteady flow around an airfoil. AFOSR Tech. Rep. AFOSR-TR-73-0640. (See also Themis Rep. R 72-11, I.I.T.)Google Scholar
Morkovin, M. V. 1964 Flow around circular cylinder -a kaleidoscope of challenging fluid phenomena. Symp. on Fully Separated Flows, p. 102. A.S.M.E.
Oseen, C. W. 1927 Hydrodynamik. Leipzig: Akademische Verlagsgesellschaft.
Rimon, Y. 1969 Numerical solution of the incompressible time-dependent viscous flow past a thin oblate spheroid Phys. Fluids Suppl. 12, II65.Google Scholar
Roache, P. J. 1972 Computational Fluid Dynamics. Albuquerque: Hermosa Publishers.
Staniforth, A. N. 1972 Ph.D. dissertation, Dept. Appl. Math., University of Western Ontario.
Timme, A. 1957 über die Geschwindigkeitsverteilung in Wirbeln Ing. Arch. 25, 205.Google Scholar
Thwaites, B. (ed.) 1960 Incompressible Aerodynamics, p. 179. Clarendon Press.
Wang, C. 1967 Separation and stall of an impulsively started elliptic cylinder J. Appl. Mech. 34, 823.Google Scholar