Skip to main content
    • Aa
    • Aa

Landslide tsunamis in lakes

  • Louis-Alexandre Couston (a1), Chiang C. Mei (a2) and Mohammad-Reza Alam (a1)

Landslides plunging into lakes and reservoirs can result in extreme wave runup at the shores. This phenomenon has claimed lives and caused damage to near-shore properties. Landslide tsunamis in lakes are different from typical earthquake tsunamis in the open ocean in that (i) the affected areas are usually within the near field of the source, (ii) the highest runup occurs within the time period of the geophysical event, and (iii) the enclosed geometry of a lake does not let the tsunami energy escape. To address the problem of transient landslide tsunami runup and to predict the resulting inundation, we utilize a nonlinear model equation in the Lagrangian frame of reference. The motivation for using such a scheme lies in the fact that the runup on an inclined boundary is directly and readily computed in the Lagrangian framework without the need to resort to approximations. In this work, we investigate the inundation patterns due to landslide tsunamis in a lake. We show by numerical computations that Airy’s approximation of an irrotational theory using Lagrangian coordinates can legitimately predict runup of large amplitude. We also demonstrate that in a lake of finite size the highest runup may be magnified by constructive interference between edge waves that are trapped along the shore and multiple reflections of outgoing waves from opposite shores, and may occur somewhat after the first inundation.

Corresponding author
Email address for correspondence:
Hide All
B. Ataie-Ashtiani  & A. Nik-Khah 2008 Impulsive waves caused by subaerial landslides. Environ. Fluid Mech. 8 (3), 263280.

A. Balzano 1998 Evaluation of methods for numerical simulation of wetting and drying in shallow water flow models. Coast. Engng 34, 83107.

A. V. Bernatskiy  & M. A. Nosov 2012 The role of bottom friction in models of nonbreaking tsunami wave runup on the shore. Izv. Atmos. Ocean. Phys. 48 (4), 427431.

G. F. Carrier  & H. P. Greenspan 1958 Water waves of finite amplitude on a sloping beach. J. Fluid Mech. 4 (1), 97109.

G. F. Carrier , T. T. Wu  & H. Yeh 2003 Tsunami run-up and draw-down on a plane beach. J. Fluid Mech. 475, 7999.

I. Didenkulova  & E. Pelinovsky 2013 Analytical solutions for tsunami waves generated by submarine landslides in narrow bays and channels. Pure Appl. Geophys. 170 (9–10), 16611671.

I. Didenkulova , E. Pelinovsky , T. Soomere  & N. Zahibo 2007a Runup of nonlinear asymmetric waves on a plane beach. In Tsunami and Nonlinear Waves (ed. A. Kundu ), pp. 175190. Springer.

I. I. Didenkulova , A. A. Kurkin  & E. N. Pelinovsky 2007b Run-up of solitary waves on slopes with different profiles. Izv. Atmos. Ocean. Phys. 43 (3), 384390.

I. I. Didenkulova  & E. N. Pelinovsky 2007 Phenomena similar to tsunami in Russian internal basins. Russian J. Earth Sci. 8 (6), 19.

M. Di Risio , P. De Girolamo , G. Bellotti , A. Panizzo , F. Aristodemo , M. G. Molfetta  & A. F. Petrillo 2009 Landslide-generated tsunamis runup at the coast of a conical island: new physical model experiments. J. Geophys. Res. 114 (C1), 116.

H. M. Frits , F. Mohammed  & J. Yoo 2009 Lituya bay landslide impact generated mega-tsunami 50th anniversary. Pure Appl. Geophys. 166 (1–2), 153175.

H. M. Fritz , W. H. Hager  & H.-E. Minor 2004 Near field characteristics of landslide generated impulse waves. J. Waterways Port Coast. Ocean Engng 130 (December), 287302.

K. Fujima 2007 Tsunami runup in Lagrangian description. In Tsunami and Nonlinear Waves (ed. A. Kundu ), pp. 191207. Springer.

J. V. Gardner , L. A. Mayer  & J. E. Hughs Clarke 2000 Morphology and processes in Lake Tahoe. Geol. Soc. Amer. Bull. 112 (5), 736746.

E. L. Geist , P. J. Lynett  & J. D. Chaytor 2009 Hydrodynamic modeling of tsunamis from the Currituck landslide. Mar. Geol. 264 (1–2), 4152.

V. Heller , M. Moalemi , R. D. Kinnear  & R. A. Adams 2012 Geometrical effects on landslide-generated tsunamis. J. Waterways Port Coast. Ocean Engng 138 (August), 286298.

A. Jensen , G. K. Pedersen  & D. J. Wood 2003 An experimental study of wave run-up at a steep beach. J. Fluid Mech 486, 161188.

H. Johnsgard  & G. Pedersen 1997 A numerical model for three-dimensional runup. Intl J. Numer. Meth. Fluids 24 (9), 913931.

U. Kânoğlu 2004 Nonlinear evolution and runup–rundown of long waves over a sloping beach. J. Fluid Mech. 513, 363372.

P. L.-F. Liu , P. Lynett  & C. E. Synolakis 2003 Analytical solutions for forced long waves on a sloping beach. J. Fluid Mech. 478, 101109.

P. L.-F. Liu , T.-R. Wu , F. Raichlen , C. E. Synolakis  & J. C. Borrero 2005 Runup and rundown generated by three-dimensional sliding masses. J. Fluid Mech. 536, 107144.

P. A. Lockridge 1990 Nonseismic phenomena in the generation and augmentation of tsunamis. Nat. Hazards 3, 403412.

P. Lynett  & P. L.-F. Liu 2002 A numerical study of submarine-landslide-generated waves and run-up. Proc. R. Soc. Lond. A 458 (2028), 28852910.

P. Lynett  & P. L.-F. Liu 2005 A numerical study of the run-up generated by three-dimensional landslides. J. Geophys. Res. 110, 116.

P. A. Madsen  & H. A. Schäffer 2010 Analytical solutions for tsunami runup on a plane beach: single waves, N-waves and transient waves. J. Fluid Mech. 645, 2757.

S. C. Medeiros  & S. C. Hagen 2013 Review of wetting and drying algorithms for numerical tidal flow models. Intl J. Numer. Meth. Fluids 71 (4), 473487.

R. E. Meyer 1986a On the shore singularity of water waves. I. The local model. Phys. Fluids 29 (10), 31523163.

R. E. Meyer 1986b On the shore singularity of waterwave theory. II. Small waves do not break on gentle beaches. Phys. Fluids 29 (10), 31643171.

A. Panizzo , P. De Girolamo  & A. Petaccia 2005a Forecasting impulse waves generated by subaerial landslides. J. Geophys. Res. 110 (C12), C12025.

A. Panizzo , P. De Girolamo , M. Di Risio , A. Maistri  & A. Petaccia 2005b Great landslide events in Italian artificial reservoirs. Nat. Hazards Earth Syst. Sci. 5, 733740.

G. Pedersen  & B. Gjevik 1983 Run-up of solitary waves. J. Fluid Mech. 135, 283299.

E. N. Pelinovsky  & R. Kh. Mazova 1992 Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles. Nat. Hazards 6, 227249.

A. Rybkin , E. Pelinovsky  & I. Didenkulova 2014 Nonlinear wave run-up in bays of arbitrary cross-section: generalization of the Carrier–Greenspan approach. J. Fluid Mech. 748, 416432.

P. Sammarco  & E. Renzi 2008 Landslide tsunamis propagating along a plane beach. J. Fluid Mech. 598, 107119.

L. Q. Spielvogel 1975 Single-wave run-up on sloping beaches. J. Fluid Mech. 74 (4), 685694.

C. E. Synolakis 1987 The runup of solitary waves. J. Fluid Mech. 185, 523545.

C. E. Synolakis , E. N. Bernard , V. V. Titov , U. Kânoğlu  & F. I. González 2008 Validation and verification of tsunami numerical models. Pure Appl. Geophys. 165 (11–12), 21972228.

S. Tadepalli  & C. E. Synolakis 1994 The run-up of N-waves on sloping beaches. Proc. R. Soc. Lond. A 445 (1923), 99112.

B. Voight , R. J. Janda , H. Glicken  & P. M. Douglass 1983 Nature and mechanics of the Mount St Helens Rockslide-avalanche of 18 May 1980. Geotechnique 33, 243273.

J. S. Walder , P. Watts , O. E. Sorensen  & K. Janssen 2003 Tsunamis generated by subaerial mass flows. J. Geophys. Res. 108 (B5), 2236, 19 pages (noted as 2–1 to 2–19 on article).

R. Weiss , H. M. Fritz  & K. Wünnemann 2009 Hybrid modeling of the mega-tsunami runup in Lituya Bay after half a century. Geophys. Res. Lett. 36 (9), L09602.

N. J. Zabusky 1962 Exact solution for the vibrations of a nonlinear continuous model string. J. Math. Phys. 3 (5), 10281039.

J. A. Zelt  & F. Raichlen 1990 A Lagrangian model for wave-induced harbour oscillations. J. Fluid Mech. 213, 203225.

J. A. Zelt 1991 The run-up of nonbreaking and breaking solitary waves. Coast. Engng 15 (3), 205246.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 89 *
Loading metrics...

Abstract views

Total abstract views: 326 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.